Xiuren Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006, 1, 641-646.	5.5	1,758
2	Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes and Development, 2006, 20, 3255-3268.	2.7	589
3	Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 2011, 145, 242-256.	13.5	420
4	The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes and Development, 2005, 19, 1532-1543.	2.7	369
5	The functions of plant small <scp>RNA</scp> s in development and in stress responses. Plant Journal, 2017, 90, 654-670.	2.8	198
6	Bidirectional processing of pri-miRNAs with branched terminal loops byÂArabidopsisÂDicer-like1. Nature Structural and Molecular Biology, 2013, 20, 1106-1115.	3.6	133
7	Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant Journal, 2011, 67, 292-304.	2.8	114
8	Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnology Journal, 2006, 4, 419-432.	4.1	113
9	Spatiotemporal Sequestration of miR165/166 by Arabidopsis Argonaute10 Promotes Shoot Apical Meristem Maintenance. Cell Reports, 2015, 10, 1819-1827.	2.9	106
10	SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature, 2018, 557, 516-521.	13.7	106
11	Trehalose Accumulation Triggers Autophagy during Plant Desiccation. PLoS Genetics, 2015, 11, e1005705.	1.5	94
12	Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathogens, 2018, 14, e1006789.	2.1	93
13	Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. ELife, 2015, 4, e06671.	2.8	92
14	KETCH1 imports HYL1 to nucleus for miRNA biogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4011-4016.	3.3	70
15	Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnology and Bioengineering, 2006, 93, 271-279.	1.7	66
16	Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing. Nature Plants, 2016, 2, 16049.	4.7	64
17	Argonautes compete for miR165/166 to regulate shoot apical meristem development. Current Opinion in Plant Biology, 2012, 15, 652-658.	3.5	59
18	Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression. Developmental Cell, 2018, 45, 769-784.e6.	3.1	50

XIUREN ZHANG

#	Article	IF	CITATIONS
19	βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathogens, 2019, 15, e1007728.	2.1	49
20	RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. ELife, 2017, 6, .	2.8	48
21	Actions of plant Argonautes: predictable or unpredictable?. Current Opinion in Plant Biology, 2018, 45, 59-67.	3.5	46
22	Degradation of SERRATE via ubiquitin-independent 20S proteasome to survey RNA metabolism. Nature Plants, 2020, 6, 970-982.	4.7	32
23	Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple. Frontiers in Plant Science, 2017, 8, 873.	1.7	27
24	The Trojan Horse of the Plant Kingdom. Cell Host and Microbe, 2018, 24, 1-3.	5.1	24
25	Multiple Quality Control Mechanisms in the ER and TGN Determine Subcellular Dynamics and Salt-Stress Tolerance Function of KORRIGAN1. Plant Cell, 2020, 32, 470-485.	3.1	21
26	Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis. Methods, 2019, 155, 30-40.	1.9	17
27	PRP4KA phosphorylates SERRATE for degradation via 20 <i>S</i> proteasome to fine-tune miRNA production in <i>Arabidopsis</i> . Science Advances, 2022, 8, eabm8435.	4.7	16
28	Salt Stress and CTD PHOSPHATASE-LIKE4 Mediate the Switch between Production of Small Nuclear RNAs and mRNAs. Plant Cell, 2017, 29, 3214-3233.	3.1	13
29	RNA architecture influences plant biology. Journal of Experimental Botany, 2021, 72, 4144-4160.	2.4	12
30	The epigenetic factor FVE orchestrates cytoplasmic SGS3-DRB4-DCL4 activities to promote transgene silencing in <i>Arabidopsis</i> . Science Advances, 2021, 7, .	4.7	11
31	Site-specific and substrate-specific control of accurate mRNA editing by a helicase complex in trypanosomes. Rna, 2020, 26, 1862-1881.	1.6	9
32	Genome-Wide Investigation of the Role of MicroRNAs in Desiccation Tolerance in the Resurrection Grass Tripogon Ioliiformis. Plants, 2018, 7, 68.	1.6	8
33	scInTime: A Computational Method Leveraging Single-Cell Trajectory and Gene Regulatory Networks to Identify Master Regulators of Cellular Differentiation. Genes, 2022, 13, 371.	1.0	4
34	The R-loop influences miRNA birth place. Nature Plants, 2022, 8, 320-321.	4.7	4
35	Tough GC beats transgene silencing. Nature Plants, 2017, 3, 850-851.	4.7	3
36	Transactivator: A New Face of Arabidopsis AGO1. Developmental Cell, 2018, 44, 277-279.	3.1	2

3

XIUREN ZHANG

#	Article	IF	CITATIONS
37	HASTY moves to chromatin for miRNA production. Molecular Plant, 2021, 14, 364-365.	3.9	2
38	Identification and Quantification of Small RNAs. Methods in Molecular Biology, 2021, 2200, 225-254.	0.4	2
39	In vitro Reconstitution Assay of miRNA Biogenesis by Arabidopsis DCL1. Bio-protocol, 2015, 5, .	0.2	2
40	Lack of endoplasmic reticulum quality control (ERQC) promotes tonoplast (TP) targeting of KORRIGAN 1 (KOR1). Plant Signaling and Behavior, 2020, 15, 1744348.	1.2	0
41	In vitro Reconstitution Assays of Arabidopsis 20S Proteasome. Bio-protocol, 2021, 11, e3967.	0.2	0