
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prehatching temperatures drive inter-annual cohort differences in great tit metabolism. Oecologia, 2022, 198, 619-627.	0.9	5
2	Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications, 2022, 13, 2112.	5.8	15
3	Carryâ€over effects on reproduction in foodâ€supplemented wintering great tits. Journal of Avian Biology, 2022, 2022, .	0.6	2
4	Connecting the data landscape of longâ€ŧerm ecological studies: The SPIâ€Birds data hub. Journal of Animal Ecology, 2021, 90, 2147-2160.	1.3	25
5	Low incubation temperature retards the development of cold tolerance in a precocial bird. Journal of Experimental Biology, 2021, 224, .	0.8	7
6	Blue tit <i>Cyanistes caeruleus</i> males increase their reproductive effort when subject to a flea experimental manipulation. Journal of Avian Biology, 2021, 52, .	0.6	0
7	Exposure to artificial light at night alters innate immune response in wild great tit nestlings. Journal of Experimental Biology, 2021, 224, .	0.8	20
8	Variation in reproductive investment increases body temperature amplitude in a temperate passerine. Oecologia, 2021, 197, 365-371.	0.9	1
9	Body temperature responses of Great Tits <i>Parus major</i> to handling in the cold. Ibis, 2020, 162, 836-844.	1.0	10
10	Descriptive and experimental evidence for timingâ€mediated polygyny risk in a pied flycatcher Ficedula hypoleuca population. Journal of Avian Biology, 2020, 51, .	0.6	6
11	Predictability of food supply modulates nocturnal hypothermia in a small passerine. Biology Letters, 2020, 16, 20200133.	1.0	13
12	Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos, 2020, 129, 1807-1819.	1.2	3
13	Avian Reproduction in a Warming World. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	32
14	Deep body and surface temperature responses to hot and cold environments in the zebra finch. Journal of Thermal Biology, 2020, 94, 102776.	1.1	6
15	Age differences in night-time metabolic rate and body temperature in a small passerine. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 349-359.	0.7	18
16	Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird. Journal of Experimental Biology, 2020, 223, .	0.8	8
17	Explaining prevalence, diversity and host specificity in a community of avian haemosporidian parasites. Oikos, 2020, 129, 1314-1329.	1.2	49
18	Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192675.	1.2	17

#	Article	IF	CITATIONS
19	A physiological perspective on the ecology and evolution of partial migration. Journal of Ornithology, 2019, 160, 893.	0.5	39
20	Immune challenge induces terminal investment at an early breeding stage in female zebra finches. Behavioral Ecology, 2019, 30, 166-171.	1.0	8
21	Age-dependent effects of predation risk on night-time hypothermia in two wintering passerine species. Oecologia, 2019, 189, 329-337.	0.9	24
22	Mass or pace? Seasonal energy management in wintering boreal passerines. Oecologia, 2019, 189, 339-351.	0.9	12
23	Heat dissipation rate constrains reproductive investment in a wild bird. Functional Ecology, 2019, 33, 250-259.	1.7	45
24	The evolution of immunity in relation to colonization and migration. Nature Ecology and Evolution, 2018, 2, 841-849.	3.4	56
25	Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. Journal of Avian Biology, 2018, 49, jav-01620.	0.6	63
26	Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia, 2018, 188, 1011-1024.	0.9	34
27	Diet and ambient temperature interact to shape plasma fatty acid composition, basal metabolic rate, and oxidative stress in great tits. Journal of Experimental Biology, 2018, 221, .	0.8	8
28	Testing the heat dissipation limit theory in a breeding passerine. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180652.	1.2	32
29	A mimicked bacterial infection prolongs stopover duration in songbirds—but more pronounced in short―than longâ€distance migrants. Journal of Animal Ecology, 2018, 87, 1698-1708.	1.3	22
30	Effects of interspecific coexistence on laying date and clutch size in two closely related species of holeâ€nesting birds. Journal of Animal Ecology, 2018, 87, 1738-1748.	1.3	10
31	Variation in laying date in relation to spring temperature in three species of tits (Paridae) and pied flycatchers <i>Ficedula hypoleuca</i> in southernmost Sweden. Journal of Avian Biology, 2017, 48, 83-90.	0.6	20
32	The use of the nest for parental roosting and thermal consequences of the nest for nestlings and parents. Behavioral Ecology and Sociobiology, 2017, 71, 171.	0.6	11
33	Adaptive temperature regulation in the little bird in winter: predictions from a stochastic dynamic programming model. Oecologia, 2017, 185, 43-54.	0.9	40
34	Body Temperature Regulation in Hot Environments. PLoS ONE, 2016, 11, e0161481.	1.1	43
35	Energy Reserves, Information Need and a Pinch of Personality Determine Decision-Making on Route in Partially Migratory Blue Tits. PLoS ONE, 2016, 11, e0163213.	1.1	5
36	Evaluation of two methods for minimally invasive peripheral body temperature measurement in birds. Journal of Avian Biology, 2016, 47, 417-427.	0.6	15

#	Article	IF	CITATIONS
37	Long-term consequences of high incubation temperature in a wild bird population. Biology Letters, 2016, 12, 20160087.	1.0	48
38	Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of holeâ€nesting birds. Ecology and Evolution, 2016, 6, 5907-5920.	0.8	47
39	Brood size constrains the development of endothermy in blue tits. Journal of Experimental Biology, 2016, 219, 2212-2219.	0.8	40
40	Fluctuating selection on basal metabolic rate. Ecology and Evolution, 2016, 6, 1197-1202.	0.8	34
41	Consistency in long-distance bird migration: contrasting patterns in time and space for two raptors. Animal Behaviour, 2016, 113, 177-187.	0.8	56
42	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	4.2	10
43	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	4.2	98
44	Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia at day. Journal of Experimental Biology, 2015, 218, 2961-9.	0.8	46
45	Population differences in the structure and coloration of great tit contour feathers. Biological Journal of the Linnean Society, 2015, 114, 82-91.	0.7	10
46	Phenological change and ecological interactions: an introduction. Oikos, 2015, 124, 1-3.	1.2	9
47	The ecoâ€evolutionary consequences of interspecific phenological asynchrony – a theoretical perspective. Oikos, 2015, 124, 102-112.	1.2	53
48	Physiological and Behavioral Responses to an Acute-Phase Response in Zebra Finches: Immediate and Short-Term Effects. Physiological and Biochemical Zoology, 2014, 87, 288-298.	0.6	41
49	Variation in clutch size in relation to nest size in birds. Ecology and Evolution, 2014, 4, 3583-3595.	0.8	49
50	A tradeoff between perceived predation risk and energy conservation revealed by an immune challenge experiment. Oikos, 2014, 123, 1091-1100.	1.2	12
51	Editorial - 20 years with Journal of Avian Biology. Journal of Avian Biology, 2014, 45, 1-2.	0.6	26
52	Clutchâ€size variation in Western Palaearctic secondary holeâ€nesting passerine birds in relation to nest box design. Methods in Ecology and Evolution, 2014, 5, 353-362.	2.2	36
53	Endotoxin injection attenuates restâ€phase hypothermia in wintering great tits through the onset of fever. Functional Ecology, 2013, 27, 236-244.	1.7	27
54	Fitness Consequences of Northward Dispersal as Possible Adaptation to Climate Change, Using Experimental Translocation of a Migratory Passerine. PLoS ONE, 2013, 8, e83176.	1.1	15

#	Article	IF	CITATIONS
55	MHC-I Affects Infection Intensity but Not Infection Status with a Frequent Avian Malaria Parasite in Blue Tits. PLoS ONE, 2013, 8, e72647.	1.1	21
56	Context-dependent costs of incubation in the pied flycatcher. Animal Behaviour, 2012, 84, 427-436.	0.8	43
57	Temperature, size, reproductive allocation, and life-history evolution in a gregarious caterpillar. Biological Journal of the Linnean Society, 2012, 105, 340-349.	0.7	15
58	Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds?. Animal Behaviour, 2012, 83, 1303-1312.	0.8	195
59	Incubation Temperature Affects Growth and Energy Metabolism in Blue Tit Nestlings. American Naturalist, 2011, 178, 639-651.	1.0	158
60	Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits. PLoS ONE, 2011, 6, e24942.	1.1	32
61	To boldly go: individual differences in boldness influence migratory tendency. Ecology Letters, 2011, 14, 871-876.	3.0	218
62	Basal metabolic rate and energetic cost of thermoregulation among migratory and resident blue tits. Oikos, 2011, 120, 1784-1789.	1.2	19
63	Partial migration: an introduction. Oikos, 2011, 120, 1761-1763.	1.2	57
64	The ecology and evolution of partial migration. Oikos, 2011, 120, 1764-1775.	1.2	579
65	Diet selection in birds: trade-off between energetic content and digestibility of seeds. Behavioral Ecology, 2011, 22, 639-647.	1.0	19
66	Long-Lasting Consequences of Elevated Yolk Testosterone for Metabolism in the Zebra Finch. Physiological and Biochemical Zoology, 2011, 84, 287-291.	0.6	26
67	Migratory and resident blue tits Cyanistes caeruleus differ in their reaction to a novel object. Die Naturwissenschaften, 2010, 97, 981-985.	0.6	32
68	Effects of season, water and predation risk on patch use by birds on the African savannah. Oecologia, 2010, 164, 637-645.	0.9	19
69	Idle slow as you grow old: longitudinal age-related metabolic decline in a wild passerine. Evolutionary Ecology, 2010, 24, 177-184.	0.5	17
70	Female zebra finches compromise clutch temperature in energetically demanding incubation conditions. Functional Ecology, 2010, 24, 1031-1036.	1.7	62
71	The Design of Artificial Nestboxes for the Study of Secondary Hole-Nesting Birds: A Review of Methodological Inconsistencies and Potential Biases. Acta Ornithologica, 2010, 45, 1-26.	0.1	274
72	Patterns and dynamics of rest-phase hypothermia in wild and captive blue tits during winter. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 737-745.	0.7	44

#	Article	IF	CITATIONS
73	Longâ€ŧerm repeatability of winter basal metabolic rate and mass in a wild passerine. Functional Ecology, 2009, 23, 768-773.	1.7	44
74	Brominated flame retardants and organochlorines in the European environment using great tit eggs as a biomonitoring tool. Environment International, 2009, 35, 310-317.	4.8	63
75	Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 51-60.	1.8	244
76	Early onset of reduced reproductive performance with age in the Treecreeper (Certhia familiaris). Journal of Ornithology, 2008, 149, 117-121.	0.5	1
77	Diffuse, short and slow migration among Blue Tits. Journal of Ornithology, 2008, 149, 365-373.	0.5	29
78	Seasonal variation in patch use in a tropical African environment. Oikos, 2008, 117, 892-898.	1.2	18
79	Experimental reduction of incubation temperature affects both nestling and adult blue tits <i>Cyanistes caeruleus</i> . Journal of Avian Biology, 2008, 39, 553-559.	0.6	44
80	The timing of birds' breeding seasons: a review of experiments that manipulated timing of breeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 399-410.	1.8	433
81	Maximum Host Survival at Intermediate Parasite Infection Intensities. PLoS ONE, 2008, 3, e2463.	1.1	53
82	Response of Great Tits <i>Parus major</i> to an Irruption of a Pine Processionary Moth <i>Thaumetopoea pityocampa</i> Population with a Shifted Phenology. Ardea, 2007, 95, 191-199.	0.3	13
83	Does the strength of an immune response reflect its energetic cost?. Journal of Avian Biology, 2007, 38, 488-494.	0.6	41
84	Breeding patterns of great tits (Parus major) in pine forests along the Portuguese west coast. Journal of Ornithology, 2007, 148, 59-68.	0.5	8
85	Leafing phenology and timing of egg laying in great tits Parus major and blue tits P. caeruleus. Journal of Avian Biology, 2006, 37, 357-363.	0.6	36
86	Do Partial and Regular Migrants Differ in Their Responses to Weather?. Auk, 2006, 123, 537-547.	0.7	8
87	LOCAL ADAPTATION TO WINTER CONDITIONS IN A PASSERINE SPREADING NORTH: A COMMON-GARDEN APPROACH. Evolution; International Journal of Organic Evolution, 2005, 59, 1600-1603.	1.1	48
88	Sex and environmental sensitivity in blue tit nestlings. Oecologia, 2005, 145, 496-503.	0.9	116
89	Local adaptation to winter conditions in a passerine spreading north: a common-garden approach. Evolution; International Journal of Organic Evolution, 2005, 59, 1600-3.	1.1	10
90	Metabolic response to temperature variation in the great tit: an interpopulation comparison. Journal of Animal Ecology, 2004, 73, 967-972.	1.3	54

#	Article	IF	CITATIONS
91	Postnatal effects of incubation length in mallard and pheasant chicks. Oikos, 2004, 105, 588-594.	1.2	8
92	Ectoparasitism in marsh tits: costs and functional explanations. Behavioral Ecology, 2003, 14, 175-181.	1.0	48
93	Metabolic consequences of hard work. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1735-1739.	1.2	191
94	Basal metabolic rate and the evolution of the adaptive immune system. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 817-821.	1.2	86
95	The resting metabolic cost of egg laying and nestling feeding in great tits. Oecologia, 2001, 128, 187-192.	0.9	129
96	Sibling competition affects individual growth strategies in marsh tit, Parus palustris, nestlings. Animal Behaviour, 2001, 61, 357-365.	0.8	64
97	Time-dependent reproductive decisions in the blue tit. Oikos, 2000, 88, 351-361.	1.2	44
98	Food Supply, Territory Quality, and Reproductive Timing in the Blue Tit (Parus Caeruleus). Ecology, 1995, 76, 1804-1812.	1.5	117
99	Fledging in altricial birds: parental manipulation or sibling competition?. Animal Behaviour, 1993, 46, 379-386.	0.8	48
100	Energy Constraints and Ultimate Decisions During Egg-Laying in the Blue Tit. Ecology, 1993, 74, 244-251.	1.5	85
101	Energetic Constraints on Hatching Asynchrony. American Naturalist, 1993, 141, 158-166.	1.0	67
102	Bisexual Incubation Facilitates Hatching Asynchrony. American Naturalist, 1993, 142, 712-717.	1.0	11
103	Clutch Size Determination in the Marsh Tit (Parus Palustris). Ecology, 1991, 72, 1757-1762.	1.5	54
104	VÇkommen till Ornis Svecica!. Ornis Svecica, 1991, 1, 1-2.	0.1	2
105	Establishment Success of Experimentally Delayed Juvenile Marsh Tits <i>Parus palustris</i> . Ethology, 1990, 85, 73-79.	0.5	42
106	Causes and Consequences of Natal Dispersal in the Marsh Tit, Parus palustris. Journal of Animal Ecology, 1989, 58, 619.	1.3	166
107	Establishment of juvenile marsh tits in winter flocks: an experimental study. Animal Behaviour, 1989, 38, 586-595.	0.8	44
108	The significance of clutch overlap in Great Tits <i>Parus major</i> . Ibis, 1989, 131, 589-600.	1.0	21

#	Article	IF	CITATIONS
109	Incubation feeding as a male tactic for early hatching. Animal Behaviour, 1988, 36, 641-647.	0.8	115
110	Effects of Dispersal Date on Winter Flock Establishment and Social Dominance in Marsh Tits Parus palustris. Journal of Animal Ecology, 1988, 57, 917.	1.3	138
111	Birds Doing It the Octopus Way: Fright Moulting and Distraction of Predators. Ornis Scandinavica, 1988, 19, 165.	1.0	10
112	Intraspecific Variation in Migratory Pattern of a Partial Migrant, the Blue Tit (Parus caeruleus): An Evaluation of Different Hypotheses. Auk, 1987, 104, 109-115.	0.7	146
113	Effect of Experimentally Altered Brood Size on Frequency and Timing of Second Clutches in the Great Tit. Auk, 1987, 104, 700-706.	0.7	83
114	Latitudinal gradients and the shaping of life-history traits in a gregarious caterpillar. Biological Journal of the Linnean Society, 0, 100, 224-236.	0.7	25
115	Early and Late Migrating Avian Individuals Differ in Constitutive Immune Function and Blood Parasite Infections – But Patterns Depend on the Migratory Strategy. Frontiers in Ecology and Evolution, 0, 10,	1.1	2