Chaowen Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907771/publications.pdf

Version: 2024-02-01

19	1,034	12	19
papers	citations	h-index	g-index
20	20	20	1331
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	POLYGALACTURONASE INVOLVED IN EXPANSION1 Functions in Cell Elongation and Flower Development in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 1018-1035.	6.6	160
2	Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis. Plant Physiology, 2016, 170, 234-249.	4.8	143
3	Roles of pectin in biomass yield and processing for biofuels. Frontiers in Plant Science, 2013, 4, 67.	3.6	122
4	POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in <i>Arabidopsis thaliana</i> Plant Cell, 2017, 29, 2413-2432.	6.6	117
5	Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 2020, 43, 107602.	11.7	107
6	Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis. Plant Cell, 2020, 32, 3576-3597.	6.6	72
7	Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of <i>Arabidopsis thaliana</i> Biomacromolecules, 2017, 18, 2937-2950.	5.4	69
8	Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nature Plants, 2022, 8, 332-340.	9.3	63
9	Activation tagging of Arabidopsis <i><scp>POLYGALACTURONASE INVOLVED IN EXPANSION </scp>2</i> promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant Journal, 2017, 89, 1159-1173.	5.7	55
10	The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication. Molecular Plant, 2020, 13, 309-320.	8.3	28
11	Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase. Journal of Experimental Botany, 2014, 65, 6645-6653.	4.8	24
12	A pectin methyltransferase modulates polysaccharide dynamics and interactions in Arabidopsis primary cell walls: Evidence from solid-state NMR. Carbohydrate Polymers, 2021, 270, 118370.	10.2	23
13	DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.). Horticulture Research, 2021, 8, 142.	6.3	12
14	Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences. Plant Signaling and Behavior, 2016, 11, e1215396.	2.4	10
15	Overexpression of a pectin methylesterase gene PtoPME35 from Populus tomentosa influences stomatal function and drought tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2020, 523, 416-422.	2.1	10
16	Reduced pectin content of cell walls prevents stress-induced root cell elongation in Arabidopsis. Journal of Experimental Botany, 2021, 72, 1073-1084.	4.8	10
17	Rapid and Synchronous Breeding of Cytoplasmic Male Sterile and Maintainer Line Through Mitochondrial DNA Rearrangement Using Doubled Haploid Inducer in Brassica napus. Frontiers in Plant Science, 2022, 13, 871006.	3.6	3
18	The Root Hair Development of Pectin Polygalacturonase PGX2 Activation Tagging Line in Response to Phosphate Deficiency. Frontiers in Plant Science, 2022, 13, 862171.	3.6	2

#	Article	lF	CITATIONS
19	Pectin methyltransferase QUASIMODO2 functions in the formation of seed coat mucilage in Arabidopsis. Journal of Plant Physiology, 2022, 274, 153709.	3.5	2