Jean-Marie Lehn

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1907593/jean-marie-lehn-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

186 156 24,712 74 h-index g-index citations papers 26,246 196 10.1 7.77 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
186	Imines as Threefold Functional Devices: Motional, Photochemical, Constitutional 2022 , 325-349		O
185	Metal Cation-Driven Dynamic Covalent Formation of Imine and Hydrazone Ligands Displaying Synergistic Co-catalysis and Auxiliary Amine Effects. <i>Chemistry - A European Journal</i> , 2021 , 27, 7516-7524	4 ^{4.8}	2
184	Supramolecular Polymerization of Triarylamine-Based Macrocycles into Electroactive Nanotubes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6498-6504	16.4	7
183	Constitutional Dynamic Selection at Low Reynolds Number in a Triple Dynamic System: Covalent Dynamic Adaptation Driven by Double Supramolecular Self-Assembly. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14136-14146	16.4	6
182	Simultaneous Generation of a [2 12] Grid-Like Complex and a Linear Double Helicate: a Three-Level Self-Sorting Process. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5819-5824	16.4	10
181	Dynamic Helicates Self-Assembly from Homo- and Heterotopic Dynamic Covalent Ligand Strands. <i>Chemistry - A European Journal</i> , 2020 , 26, 15664-15671	4.8	14
180	Phase transfer of metal cations by induced dynamic carrier agents: biphasic extraction based on dynamic covalent chemistry. <i>Chemical Science</i> , 2020 , 11, 11468-11477	9.4	1
179	Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15137-15145	16.4	9
178	Triple Self-Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine-Based CuI, FeII, and ZnII Complexes. <i>Angewandte Chemie</i> , 2020 , 132, 12584-12592	3.6	2
177	Triple Self-Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine-Based Cu , Fe , and Zn Complexes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12484-12492	16.4	6
176	Dynamic polyimine macrobicyclic cryptands - self-sorting with component selection. <i>Chemical Science</i> , 2019 , 10, 1836-1843	9.4	41
175	Electronic absorption and emission properties of bishydrazone [2 12] metallosupramolecular grid-type architectures. <i>Inorganica Chimica Acta</i> , 2019 , 494, 223-231	2.7	11
174	Pattern Generation and Information Transfer through a Liquid/Liquid Interface in 3D Constitutional Dynamic Networks of Imine Ligands in Response to Metal Cation Effectors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12724-12737	16.4	19
173	Time-Dependent Switching of Constitutional Dynamic Libraries and Networks from Kinetic to Thermodynamic Distributions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18560-18569	16.4	17
172	Self-sorting of two imine-based metal complexes: balancing kinetics and thermodynamics in constitutional dynamic networks. <i>Chemical Science</i> , 2019 , 11, 1114-1121	9.4	13
171	Multiple adaptation of constitutional dynamic networks and information storage in constitutional distributions of acylhydrazones. <i>Chemical Science</i> , 2019 , 10, 90-98	9.4	22
170	Dynamic Covalent Metathesis in the C?C/C?N Exchange between Knoevenagel Compounds and Imines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5560-5568	16.4	28

169	Protonation of a Spherical Macrotricyclic Tetramine: Water Inclusion, Allosteric Effect, and Cooperativity. <i>ChemPlusChem</i> , 2018 , 83, 605-611	2.8	1	
168	From Coordination Chemistry to Adaptive Chemistry. <i>Advances in Inorganic Chemistry</i> , 2018 , 71, 3-78	2.1	27	
167	Switching Multivalent DNA Complexation using Metal-Controlled Cationic Supramolecular Self-Assemblies. <i>Chemistry - A European Journal</i> , 2018 , 24, 1518-1521	4.8	11	
166	Multivalent Metallosupramolecular Assemblies as Effective DNA Binding Agents. <i>Chemistry - A European Journal</i> , 2018 , 24, 10802-10811	4.8	27	
165	Spin State Chemistry: Modulation of Ligand p K by Spin State Switching in a [20] Iron(II) Grid-Type Complex. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8218-8227	16.4	39	
164	Proton-Gradient-Driven Oriented Motion of Nanodiamonds Grafted to Graphene by Dynamic Covalent Bonds. <i>ACS Nano</i> , 2018 , 12, 7141-7147	16.7	12	
163	The Photodynamic Covalent Bond: Sensitized Alkoxyamines as a Tool To Shift Reaction Networks Out-of-Equilibrium Using Light Energy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7647-7657	16.4	35	
162	DNA-Based Multiconstituent Dynamic Networks: Hierarchical Adaptive Control over the Composition and Cooperative Catalytic Functions of the Systems. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12077-12089	16.4	30	
161	Higher Order Constitutional Dynamic Networks: [2B] and [3B] Networks Displaying Multiple, Synergistic and Competitive Hierarchical Adaptation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2474-2483	16.4	33	
160	Columnar Self-Assemblies of Triarylamines as Scaffolds for Artificial Biomimetic Channels for Ion and for Water Transport. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3721-3727	16.4	57	
159	Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers. <i>Accounts of Chemical Research</i> , 2017 , 50, 376-386	24.3	48	
158	Kinetic Selectivity and Thermodynamic Features of Competitive Imine Formation in Dynamic Covalent Chemistry. <i>Chemistry - A European Journal</i> , 2017 , 23, 11108-11118	4.8	33	
157	Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9662-9671	16.4	47	
156	Coevolution and ratiometric behaviour in metal cation-driven dynamic covalent systems. <i>Chemical Science</i> , 2017 , 8, 2125-2130	9.4	17	
155	Gelation-driven selection in dynamic covalent C 00000000000000000000000000000000000	9.4	12	
154	00000000000000000000000000000000000000	4.8	19	
153	မြေးမြှင့်မြော်ရုံ တိုင်ရေး မေးများ မေးများမွာ မေးများ မေးများ မေးများ မေးများ မေးများ မေးများ မေးမျာ	16.7	35	
152	Training a Constitutional Dynamic Network for Effector Recognition: Storage, Recall, and Erasing of Information. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11783-91	16.4	58	

151	Proteoid Dynamers with Tunable Properties. Advanced Functional Materials, 2016, 26, 6297-6305	15.6	11
150	From precision polymers to complex materials and systems. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	555
149	Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4130-54	16.4	61
148	Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof. <i>Nanoscale</i> , 2016 , 8, 5605-11	7.7	7
147	Supramolecular reactions of metallo-architectures: Ag-double-helicate/Zn-grid, Pb-grid/Zn-grid interconversions, and Ag-double-helicate fusion. <i>Chemical Science</i> , 2016 , 7, 3689-3693	9.4	16
146	Nonlinear Kinetic Behavior in Constitutional Dynamic Reaction Networks. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16809-16814	16.4	15
145	Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet. <i>Angewandte Chemie</i> , 2016 , 128, 13648-13652	3.6	3
144	Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13450-13454	16.4	18
143	Internal CI Bond Rotation in Photoisomers of Bisimines: a Light-Responsive Two-Step Molecular Speed Regulator Based on Double Imine Photoswitching. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 1243-1246	3.2	4
142	Perspectives in chemistryaspects of adaptive chemistry and materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3276-89	16.4	328
141	DYNAMERS: dynamic polymers as self-healing materials. <i>Chemical Society Reviews</i> , 2015 , 44, 3786-807	58.5	448
140	Perspektiven der Chemie [Aspekte adaptiver Chemie und adaptiver Materialien. <i>Angewandte Chemie</i> , 2015 , 127, 3326-3340	3.6	88
139	Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14345-8	16.4	64
138	Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C?N Bond Rotation of Camphorquinone Imines. <i>Angewandte Chemie</i> , 2015 , 127, 14553-14556	3.6	24
137	Multivalency by self-assembly: binding of concanavalin A to metallosupramolecular architectures decorated with multiple carbohydrate groups. <i>Chemistry - A European Journal</i> , 2014 , 20, 6960-77	4.8	27
136	Ferromagnetic coupling in copper(II) [2 🏿 grid-like complexes. <i>Inorganic Chemistry</i> , 2014 , 53, 4275-7	5.1	10
135	Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13114-7	16.4	191

133	Organocatalyzed and Uncatalyzed C?C/C?C and C?C/C?N Exchange Processes between Knoevenagel and Imine Compounds in Dynamic Covalent Chemistry. <i>Helvetica Chimica Acta</i> , 2014 , 97, 1219-1236	2	19
132	Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. <i>Nature Chemistry</i> , 2014 , 6, 1017-23	17.6	106
131	Adaptation in constitutional dynamic libraries and networks, switching between orthogonal metalloselection and photoselection processes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9509-18	16.4	92
130	Reversible adaptation to photoinduced shape switching by oligomer-macrocycle interconversion with component selection in a three-state constitutional dynamic system. <i>Chemistry - A European Journal</i> , 2014 , 20, 16188-93	4.8	20
129	Photo- and Thermoresponsive Supramolecular Assemblies: Reversible Photorelease of K+ Ions and Constitutional Dynamics. <i>Angewandte Chemie</i> , 2013 , 125, 4032-4035	3.6	13
128	Perspektiven der Chemie 🖾 tufen zur komplexen Materie. Angewandte Chemie, 2013 , 125, 2906-2921	3.6	104
127	Dynamers: From Supramolecular Polymers to Adaptive Dynamic Polymers. <i>Advances in Polymer Science</i> , 2013 , 155-172	1.3	19
126	Perspectives in chemistrysteps towards complex matter. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2836-50	16.4	460
125	Photo- and thermoresponsive supramolecular assemblies: reversible photorelease of K+ ions and constitutional dynamics. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3940-3	16.4	50
124	Grid-double-helicate interconversion. <i>Chemical Communications</i> , 2013 , 49, 5733-5	5.8	34
124	Grid-double-helicate interconversion. <i>Chemical Communications</i> , 2013 , 49, 5733-5 Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566		
<u>'</u>			
123	Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566	54 <u>5</u> 5671	23
123	Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566 Constitutional Dynamic Systems. <i>Israel Journal of Chemistry</i> , 2013 , 53, 9-10 Paromomycin and neomycin B derived cationic lipids: synthesis and transfection studies. <i>Journal of</i>	54 <u>5</u> 5671	5
123	Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566 Constitutional Dynamic Systems. <i>Israel Journal of Chemistry</i> , 2013 , 53, 9-10 Paromomycin and neomycin B derived cationic lipids: synthesis and transfection studies. <i>Journal of Controlled Release</i> , 2012 , 158, 461-9 Organocatalysis of C?N/C?N and C?C/C?N Exchange in Dynamic Covalent Chemistry. <i>Helvetica</i>	3·4 11.7	23529
123 122 121	Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566 Constitutional Dynamic Systems. <i>Israel Journal of Chemistry</i> , 2013 , 53, 9-10 Paromomycin and neomycin B derived cationic lipids: synthesis and transfection studies. <i>Journal of Controlled Release</i> , 2012 , 158, 461-9 Organocatalysis of C?N/C?N and C?C/C?N Exchange in Dynamic Covalent Chemistry. <i>Helvetica Chimica Acta</i> , 2012 , 95, 2635-2651 Self-ordering of metallogrid complexes via directed hydrogen-bonding. <i>Dalton Transactions</i> , 2012 ,	3·4 11.7	23 5 29 28 28
123 122 121 120	Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. <i>Macromolecules</i> , 2013 , 46, 566 Constitutional Dynamic Systems. <i>Israel Journal of Chemistry</i> , 2013 , 53, 9-10 Paromomycin and neomycin B derived cationic lipids: synthesis and transfection studies. <i>Journal of Controlled Release</i> , 2012 , 158, 461-9 Organocatalysis of C?N/C?N and C?C/C?N Exchange in Dynamic Covalent Chemistry. <i>Helvetica Chimica Acta</i> , 2012 , 95, 2635-2651 Self-ordering of metallogrid complexes via directed hydrogen-bonding. <i>Dalton Transactions</i> , 2012 , 41, 13848-55	3.4 11.7 2	23 5 29 28 28

115	Chelation-controlled molecular morphology: aminal to imine rearrangements. <i>Dalton Transactions</i> , 2012 , 41, 4335-57	4.3	10
114	Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. <i>Topics in Current Chemistry</i> , 2012 , 322, 1-32		70
113	Thermoresponsive dynamers: thermally induced, reversible chain elongation of amphiphilic poly(acylhydrazones). <i>Journal of the American Chemical Society</i> , 2011 , 133, 10966-73	16.4	83
112	Configurational and constitutional information storage: multiple dynamics in systems based on pyridyl and acyl hydrazones. <i>Chemistry - A European Journal</i> , 2011 , 17, 248-58	4.8	167
111	Structural and metallo selectivity in the assembly of $[2 \ \mathbb{D}]$ grid-type metallosupramolecular species: mechanisms and kinetic control. <i>Dalton Transactions</i> , 2011 , 40, 12320-32	4.3	39
110	Modulation of self-assembly and magnetism of Cu(II) grids in solution. <i>Chemical Communications</i> , 2011 , 47, 10951-3	5.8	16
109	Dynamers: Dynamic Molecular and Supramolecular Polymers. <i>Australian Journal of Chemistry</i> , 2010 , 63, 611	1.2	104
108	Glycodynamers: dynamic polymers bearing oligosaccharides residuesgeneration, structure, physicochemical, component exchange, and lectin binding properties. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2573-84	16.4	104
107	Evolution of a constitutional dynamic library driven by self-organisation of a helically folded molecular strand. <i>Chemistry - A European Journal</i> , 2010 , 16, 4903-10	4.8	29
106	Cooperative, bottom-up generation of rigid-rod nanostructures through dynamic polymer chemistry. <i>Polymer International</i> , 2010 , 59, 1477-1491	3.3	19
105	Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases. <i>Chemistry - A European Journal</i> , 2009 , 15, 117-24	4.8	48
104	Highly sensitive magnetic effects induced by hydrogen-bonding interactions in a high-spin metallosupramolecular Fe(4) (II) [2x2] grid-type complex. <i>Chemistry - A European Journal</i> , 2009 , 15, 2500) -4 8	30
103	Adaptation and optical signal generation in a constitutional dynamic network. <i>Chemistry - A European Journal</i> , 2009 , 15, 5640-5	4.8	51
102	Dynamic DielsAlder Reactions of 9,10-Dimethylanthracene: Reversible Adduct Formation, Dynamic Exchange Processes and Thermal Fluorescence Modulation. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 1691-1697	3.2	31
101	Structural and functional evolution of a library of constitutional dynamic polymers driven by alkali metal ion recognition. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7635-8	16.4	66
100	Reversible constitutional switching between macrocycles and polymers induced by shape change in a dynamic covalent system. <i>New Journal of Chemistry</i> , 2009 , 33, 271	3.6	56
99	Adaptation to shape switching by component selection in a constitutional dynamic system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5546-59	16.4	79
98	Structural features directing the specificity and functionality of metallo-supramolecular grid-type architectures. <i>Dalton Transactions</i> , 2009 , 5787-802	4.3	38

97	Glycodynamers: dynamic analogs of arabinofuranoside oligosaccharides. <i>Biopolymers</i> , 2008 , 89, 486-96	2.2	35
96	Glycodynamers: fluorescent dynamic analogues of polysaccharides. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3556-9	16.4	93
95	Reversible switching between macrocyclic and polymeric states by morphological control in a constitutional dynamic system. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2240-3	16.4	67
94	Reversible Switching between Macrocyclic and Polymeric States by Morphological Control in a Constitutional Dynamic System. <i>Angewandte Chemie</i> , 2008 , 120, 2272-2275	3.6	21
93	Structural selection in G-quartet-based hydrogels and controlled release of bioactive molecules. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 134-9	4.5	73
92	Metallodynamers: neutral double-dynamic metallosupramolecular polymers. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 1324-35	4.5	30
91	Modulation of the supramolecular structure of G-quartet assemblies by dynamic covalent decoration. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10058-9	16.4	42
90	Solid-state self-assembly of polymeric double helicates leading to linear arrays of silver(I) ions and reversible strand/double helix interconversion in solution. <i>Chemistry - A European Journal</i> , 2007 , 13, 59-	6 8 .8	79
89	Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5007-10	16.4	108
88	Metallodynamers: Neutral Dynamic Metallosupramolecular Polymers Displaying Transformation of Mechanical and Optical Properties on Constitutional Exchange. <i>Angewandte Chemie</i> , 2007 , 119, 5095-50	og8	38
87	Generation of [20] Grid Metallosupramolecular Architectures from Preformed Ditopic Bis(acylhydrazone) Ligands and through Component Self-Assembly. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 2944-2965	2.3	48
86	From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. <i>Chemical Society Reviews</i> , 2007 , 36, 151-60	58.5	1513
85	Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16534-9	11.5	115
84	Tunable fluorene-based dynamers through constitutional dynamic chemistry. <i>Chemistry - A European Journal</i> , 2006 , 12, 1723-35	4.8	105
83	Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. <i>Chemistry - A European Journal</i> , 2006 , 12, 1715-22	4.8	115
82	Formation of RACK- and grid-type metallosupramolecular architectures and generation of molecular motion by reversible uncoiling of helical ligand strands. <i>Chemistry - A European Journal</i> , 2006 , 12, 4503-22	4.8	101
81	Messages in molecules: ligand/cation coding and self-recognition in a constitutionally dynamic system of heterometallic double helicates. <i>Chemistry - A European Journal</i> , 2006 , 12, 5632-41	4.8	67
80	Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. <i>Chemistry - A European Journal</i> , 2006 , 12, 5910-5	4.8	130

79	DyNAs: constitutional dynamic nucleic acid analogues. <i>Chemistry - A European Journal</i> , 2006 , 12, 8581-8	4.8	56
78	Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angewandte Chemie - International Edition, 2006, 45, 4619-24	16.4	78
77	Self-Assembly, Structure and Solution Dynamics of Tetranuclear Zn2+ Hydrazone [20] Grid-Type Complexes. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 784-792	2.3	45
76	Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16748-63	16.4	84
75	Dynamic sol-gel interconversion by reversible cation binding and release in G-quartet-based supramolecular polymers. <i>Chemical Communications</i> , 2005 , 5763-5	5.8	82
74	Double dynamers: molecular and supramolecular double dynamic polymers. <i>Chemical Communications</i> , 2005 , 1519-21	5.8	97
73	Scandium(III) catalysis of transimination reactions. Independent and constitutionally coupled reversible processes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5528-39	16.4	120
72	Dynamers: dynamic molecular and supramolecular polymers. <i>Progress in Polymer Science</i> , 2005 , 30, 814-	833 16	514
71	Synthesis of side-chain functionalised ligands for the generation of quartet receptor arrays via self-assembly of [20] grid complexes. <i>Tetrahedron Letters</i> , 2005 , 46, 6349-6353	2	14
70	Reversible Diels-Alder reactions for the generation of dynamic combinatorial libraries. <i>Organic Letters</i> , 2005 , 7, 15-8	6.2	123
69	Two Morphologies of Stable, Highly Ordered Assemblies of a Long-Chain-Substituted [2 [2]-Grid-Type FeII Complex Adsorbed on HOPG. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 2641-2647	2.3	28
68	Kanamycin A-derived cationic lipids as vectors for gene transfection. <i>ChemBioChem</i> , 2005 , 6, 1023-33	3.8	52
67	Mixed-valence, mixed-spin-state, and heterometallic [2x2] grid-type arrays based on heteroditopic hydrazone ligands: synthesis and electrochemical features. <i>Chemistry - A European Journal</i> , 2005 , 11, 2549-65	4.8	56
66	Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding. <i>Chemistry - A European Journal</i> , 2005 , 11, 6818-28	4.8	65
65	Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5938-43	11.5	303
64	Grid-type metal ion architectures: functional metallosupramolecular arrays. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3644-62	16.4	1163
63	Generation of dynamic constitutional diversity and driven evolution in helical molecular strands under Lewis acid catalyzed component exchange. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4902-6	16.4	83
62	Metallionen-Gitterarchitekturen: funktionelle supramolekulare Metallkomplexe. <i>Angewandte Chemie</i> , 2004 , 116, 3728-3747	3.6	172

(2002-2004)

61	Dynamic combinatorial carbohydrate libraries: probing the binding site of the concanavalin A lectin. <i>Chemistry - A European Journal</i> , 2004 , 10, 1711-5	4.8	117
60	Protonic modulation of redox properties in ionisable [2 x 2] grid-like metalloarrays. <i>Chemical Communications</i> , 2004 , 718-9	5.8	59
59	Programmed single step self-assembly of a [2 🏿] grid architecture built on metallic centers of different coordination geometries. <i>Chemical Communications</i> , 2004 , 1168-1169	5.8	31
58	Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11448-9	16.4	117
57	Hierarchical self-assembly of supramolecular spintronic modules into 1D- and 2D-architectures with emergence of magnetic properties. <i>Chemistry - A European Journal</i> , 2004 , 11, 94-100	4.8	94
56	Self-organization by selection: generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 11970-4	11.5	130
55	Helicity-Encoded Molecular Strands: Efficient Access by the Hydrazone Route and Structural Features. <i>Helvetica Chimica Acta</i> , 2003 , 86, 1598-1624	2	97
54	Self-Assembly of Non-Biological Polymeric Strands Undergoing Enforced Helical Self-Organization. <i>Helvetica Chimica Acta</i> , 2003 , 86, 3417-3426	2	38
53	Aminoglycoside-Derived Cationic Lipids for Gene Transfection: Synthesis of Kanamycin A Derivatives. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 2764-2774	3.2	39
52	Supramolecular spintronic devices: spin transitions and magnetostructural correlations in [Fe4IIL4]8+ [2x2]-grid-type complexes. <i>Chemistry - A European Journal</i> , 2003 , 9, 4422-9	4.8	143
51	Synthesis of ionisable [2 \times 2] grid-type metallo-arrays and reversible protonic modulation of the optical properties of the [Co4(II)L4]8+ species. <i>Chemical Communications</i> , 2003 , 1338-9	5.8	101
50	Self-assembly, structure, and dynamic interconversion of metallosupramolecular architectures generated by Pb(II) binding-induced unfolding of a helical ligand. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10257-65	16.4	137
49	Mechanistic Features, Cooperativity, and Robustness in the Self-Assembly of Multicomponent Silver(I) Grid-Type Metalloarchitectures. <i>Angewandte Chemie</i> , 2002 , 114, 2884-2888	3.6	11
48	Supramolecular assemblies of a bis(terpyridine) ligand and of its [2x2] grid-type Zn(II) and Co(II) complexes on highly ordered pyrolytic graphite. <i>Chemistry - A European Journal</i> , 2002 , 8, 951-7	4.8	122
47	Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arraysformation, characterization, and properties. <i>Chemistry - A European Journal</i> , 2002 , 8, 1227-44	4.8	274
46	Mechanistic features, cooperativity, and robustness in the self-assembly of multicomponent silver(I) grid-type metalloarchitectures. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2760-4	16.4	49
45	Aminoglycoside-derived cationic lipids as efficient vectors for gene transfection in vitro and in vivo. <i>Journal of Gene Medicine</i> , 2002 , 4, 517-26	3.5	48
44	Drug discovery by dynamic combinatorial libraries. <i>Nature Reviews Drug Discovery</i> , 2002 , 1, 26-36	64.1	405

43	Toward self-organization and complex matter. Science, 2002, 295, 2400-3	33.3	1916
42	Toward complex matter: supramolecular chemistry and self-organization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4763-8	11.5	1109
41	Chemical biology of dynamic combinatorial libraries. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2002 , 1572, 178-186	4	83
40	Two-Level Self-Organisation of Arrays of [22] Grid-Type Tetranuclear Metal Complexes by Hydrogen Bonding. <i>European Journal of Inorganic Chemistry</i> , 2001 , 2001, 1515-1521	2.3	64
39	Self-Assembly of Tricuprous Double Helicates: Thermodynamics, Kinetics, and Mechanism. <i>Helvetica Chimica Acta</i> , 2001 , 84, 1694-1711	2	68
38	Self-assembly in self-organized inorganic systems: a view of programmed metallosupramolecular architectures. <i>Journal of the Brazilian Chemical Society</i> , 2001 , 12, 431	1.5	58
37	Durch Temperatur, Druck oder Licht induzierter Spinßergang in einer supramolekularen Fe-[2½]-Gitterverbindung. <i>Angewandte Chemie</i> , 2000 , 112, 2563-2566	3.6	103
36	Programmed chemical systems: multiple subprograms and multiple processing/expression of molecular information. <i>Chemistry - A European Journal</i> , 2000 , 6, 2097-102	4.8	194
35	Multiple expression of molecular information: enforced generation of different supramolecular inorganic architectures by processing of the same ligand information through specific coordination algorithms. <i>Chemistry - A European Journal</i> , 2000 , 6, 2103-11	4.8	83
34	Self-assembly and structure of interconverting multinuclear inorganic arrays: a. <i>Chemistry - A European Journal</i> , 2000 , 6, 4510-7	4.8	119
33	Spin Crossover in a Supramolecular Fe4II [2🏿] Grid Triggered by Temperature, Pressure, and Light. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2504-2507	16.4	294
32	Multilevel Molecular Electronic Species: Electrochemical Reduction of a [2½] Co Grid-Type Complex by 11 Electrons in 10 Reversible Steps. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4139-4142	16.4	75
31	In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A. <i>ChemBioChem</i> , 2000 , 1, 41-8	3.8	183
30	STM studies on monolayers of [Co(L)4]A8 metallogrids on graphite. <i>Applied Surface Science</i> , 1999 , 144-145, 456-460	6.7	11
29	Self-Assembly, Structure, and Physical Properties of Tetranuclear ZnII and CoII Complexes of [2 12] Grid-Type. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 1421-1428	2.3	73
28	Kontrollierte Anordnung und Orientierung supramolekularer Metallgitter auf FestkEperoberflEhen. <i>Angewandte Chemie</i> , 1999 , 111, 2701-2705	3.6	54
27	Self-Assembly and Characterization of Multimetallic Grid-Type Lead(II) Complexes. <i>Chemistry - A European Journal</i> , 1999 , 5, 1803-1808	4.8	94
26	Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries. <i>Chemistry - A European Journal</i> , 1999 , 5, 2455-2463	4.8	800

25	Controlled Arrangement of Supramolecular Metal Coordination Arrays on Surfaces. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2547-2550	16.4	159
24	Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries 1999 , 5, 2455		7
23	Synthesis and Properties of Silver(I) and Copper(I) Helicates with Imine-Bridged Oligobipyridine Ligands. <i>European Journal of Inorganic Chemistry</i> , 1998 , 1998, 977-982	2.3	30
22	Self-Assembly at the AirWater Interface. In-Situ Preparation of Thin Films of Metal Ion Grid Architectures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4850-4860	16.4	89
21	Self-assembly of a symmetric tetracopper box-grid with guest trapping in the solid state. <i>Chemical Communications</i> , 1997 , 2231-2232	5.8	47
20	Self-Assembly of Tetra- and Hexanuclear Circular Helicates. <i>Journal of the American Chemical Society</i> , 1997 , 119, 10956-10962	16.4	457
19	Coordination Arrays: Tetranuclear Cobalt(II) Complexes with [2 🖸]-Grid Structure. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 1842-1844		167
18	Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. <i>Chemical Communications</i> , 1996 , 1527	5.8	89
17	Helicate self-assembly from heterotopic ligand strands of specific binding site sequence. <i>Chemical Communications</i> , 1996 , 2733	5.8	61
16	Selbstaufbau eines zirkularen Doppelhelicates. <i>Angewandte Chemie</i> , 1996 , 108, 1987-1990	3.6	138
15	Self-Assembly of a Circular Double Helicate. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 1838-1840		513
14	Multicomponent Self-Assembly: Spontaneous Formation of a Cylindrical Complex from Five Ligands and Six Metal Ions. <i>Angewandte Chemie International Edition in English</i> , 1993 , 32, 69-72		256
13	Selbstorganisation von Multikomponenten-systemen: spontane Bildung eines zylinderfümigen Komplexes aus füf Liganden und sechs Metall-Ionen. <i>Angewandte Chemie</i> , 1993 , 105, 92-95	3.6	92
12	Helicate self-organisation: positive cooperativity in the self-assembly of double-helical metal complexes. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 838		113
11	Caro-Cryptands: Tris-carotenoid macrobicyclic ligandsBynthesis, crystal structure, and dinuclear copper(I) complexes. <i>Helvetica Chimica Acta</i> , 1992 , 75, 1069-1077	2	16
10	A New Macrobicyclic Tris-bipyridine Ligand and Its Cu and Ag Complexes. <i>Angewandte Chemie International Edition in English</i> , 1991 , 30, 1331-1333		65
9	Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. <i>Advanced Materials</i> , 1990 , 2, 254-257	24	590
8	Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular components. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 479		227

7	Supramolecular Chemistry Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). <i>Angewandte Chemie International Edition in English</i> , 1988 , 27, 89-112		2853
6	Anion-receptor molecules: Macrocyclic and macrobicyclic effects on anion binding by polyammonium receptor molecules. <i>Helvetica Chimica Acta</i> , 1988 , 71, 749-756	2	67
5	The EhundleDapproach to molecular channels synthesis of a macrocycle-based molecular bundle. <i>Tetrahedron Letters</i> , 1988 , 29, 3803-3806	2	88
4	Polyaza-macrocycles of cyclophane type: Synthesis, structure of a chloroform inclusion complex and anion binding <i>Tetrahedron Letters</i> , 1987 , 28, 3489-3492	2	52
3	Polyaza macrobicyclic cryptands: synthesis, crystal structures of a cyclophane type macrobicyclic cryptand and of its dinuclear copper(I) cryptate, and anion binding features. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 1691		99
2	Synthesis and Protonation Features of 24-, 27- and 32-membered Macrocyclic Polyamines. <i>Helvetica Chimica Acta</i> , 1983 , 66, 1262-1278	2	93
1	Crystal structure of a polyfunctional macrocyclic K+ complex provides a solid-state model of a K+ channel. <i>Nature</i> , 1982 , 295, 526-7	50.4	50