Junfeng Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907587/publications.pdf

Version: 2024-02-01

623734 642732 23 549 14 23 citations g-index h-index papers 23 23 23 670 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly efficient isomerization of glucose to fructose over a novel aluminum doped graphitic carbon nitride bifunctional catalyst. Journal of Cleaner Production, 2022, 346, 131144.	9.3	10
2	Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Industrial Crops and Products, 2022, 180, 114700.	5.2	12
3	Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents. Bioresource Technology, 2021, 321, 124440.	9.6	23
4	Acid-Catalyzed Conversion of Cellulose Into Levulinic Acid With Biphasic Solvent System. Frontiers in Plant Science, 2021, 12, 630807.	3.6	7
5	In Situ Hydrodeoxygenation of Lignin-Derived Phenols With Synergistic Effect Between the Bimetal and Nb2O5 Support. Frontiers in Energy Research, 2021, 9, .	2.3	4
6	Maximizing utilization of poplar wood by microwave-assisted pretreatment with methanol/dioxane binary solvent. Bioresource Technology, 2020, 300, 122657.	9.6	24
7	Highly efficient and selectivefractionation strategy for lignocellulosic biomass with recyclable dioxane/ethylene glycol binary solvent. Industrial Crops and Products, 2020, 144, 112038.	5.2	19
8	Synchronous conversion of lignocellulosic polysaccharides to levulinic acid with synergic bifunctional catalysts in a biphasic cosolvent system. Industrial Crops and Products, 2020, 145, 112084.	5.2	26
9	Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research. Journal of Agricultural and Food Chemistry, 2020, 68, 13760-13769.	5.2	11
10	Efficient Niâ€Cu/AC Bimetal Catalyst for Hydrogenolysis of Lignin to Produce Highâ€Valueâ€Added Chemicals. ChemistrySelect, 2020, 5, 10090-10097.	1.5	11
11	Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. Bioresource Technology, 2020, 315, 123776.	9.6	10
12	Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals. Green Chemistry, 2019, 21, 4951-4957.	9.0	22
13	Efficient Utilization and Conversion of Whole Components in Waste Biomass with One-Pot-Oriented Liquefaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 18142-18152.	6.7	8
14	Hydrotreatment of lipid model for diesel-like alkane using nitrogen-doped mesoporous carbon-supported molybdenum carbide. Applied Catalysis B: Environmental, 2019, 242, 150-160.	20.2	65
15	Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals <i>via</i> directional microwave-assisted liquefaction. Sustainable Energy and Fuels, 2018, 2, 1035-1047.	4.9	34
16	Activated carbon supported molybdenum and tungsten carbides for hydrotreatment of fatty acids into green diesel. Fuel, 2018, 228, 103-111.	6.4	49
17	Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts. Energy, 2017, 135, 1-13.	8.8	27
18	Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Applied Catalysis A: General, 2017, 542, 163-173.	4.3	41

#	Article	IF	CITATIONS
19	In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy, 2017, 105, 140-148.	8.9	46
20	Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 2017, 244, 496-508.	9.6	12
21	Characterization of depolymerized lignin and renewable phenolic compounds from liquefied waste biomass. RSC Advances, 2016, 6, 95698-95707.	3.6	31
22	Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass. Applied Energy, 2015, 154, 520-527.	10.1	40
23	One-step method to produce methyl- <scp>d</scp> -glucoside from lignocellulosic biomass. RSC Advances, 2015, 5, 38783-38791.	3.6	17