
Ana Viñuales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907279/publications.pdf Version: 2024-02-01

ANA VIÃ+HALES

#	Article	IF	CITATIONS
1	Room-Temperature Self-Standing Cellulose-Based Hydrogel Electrolytes for Electrochemical Devices. Polymers, 2020, 12, 2686.	4.5	11
2	Spectroelectrochemical study of alkyl-aryl asymmetric viologens in poly(vinyl alcohol) (PVA) – borax electrolyte. Electrochimica Acta, 2019, 323, 134792.	5.2	6
3	Driving Signals Optimization for Viologen-Based Electrochromic Vision Devices. IEEE Sensors Journal, 2019, 19, 1740-1747.	4.7	2
4	Consecutive anchoring of symmetric viologens: Electrochromic devices providing colorless to neutral-color switching. Solar Energy Materials and Solar Cells, 2018, 177, 110-119.	6.2	20
5	The reduction mechanism of p-cyanophenylviologen in PVA-borax gel polyelectrolyte-based bicolor electrochromic devices. Electrochimica Acta, 2018, 292, 81-87.	5.2	15
6	Oneâ€Step Preparation of Viologenâ€TiO ₂ Nanoparticles via a Hydrothermally Assisted Sol–Gel Process for Use in Electrochromic Films and Devices. Particle and Particle Systems Characterization, 2018, 35, 1800142.	2.3	2
7	A new standard method to calculate electrochromic switching time. Solar Energy Materials and Solar Cells, 2018, 185, 54-60.	6.2	62
8	All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials, 2018, 11, 414.	2.9	89
9	Control of disability glare by means of electrochromic filtering glasses: A pilot study. Journal of Innovative Optical Health Sciences, 2017, 10, 1650028.	1.0	2
10	Colorlessâ€toâ€Black/Gray Electrochromic Devices Based on Single 1â€Alkylâ€1′â€Aryl Asymmetric Viologenâ€Modified Monolayered Electrodes. Advanced Optical Materials, 2017, 5, 1600989.	7.3	57
11	Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. Journal of Food Engineering, 2017, 193, 20-28.	5.2	69
12	Multicolor Electrochromics: Rainbow-Like Devices. ACS Applied Materials & Interfaces, 2016, 8, 14795-14801.	8.0	126
13	Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature. Solar Energy Materials and Solar Cells, 2016, 157, 624-635.	6.2	34
14	Colorless to Neutral Color Electrochromic Devices Based on Asymmetric Viologens. ACS Applied Materials & Interfaces, 2016, 8, 29619-29627.	8.0	78
15	Polyvinyl Alcohol-Borax Slime as Promising Polyelectrolyte for High-Performance, Easy-to-Make Electrochromic Devices. ChemElectroChem, 2015, 2, 175-175.	3.4	Ο
16	Polyvinyl Alcohol–Borax Slime as Promising Polyelectrolyte for Highâ€Performance, Easyâ€ŧoâ€Make Electrochromic Devices. ChemElectroChem, 2015, 2, 218-223.	3.4	58
17	Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices. Materials, 2014, 7, 3512-3521.	2.9	23
18	Flexible Viologen Electrochromic Devices with Low Operational Voltages Using Reduced Graphene Oxide Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 14562-14567.	8.0	100

Ana VIñuales

#	Article	IF	CITATIONS
19	Thickness-Dependent Coloration Properties of Glass-Substrate Viologen-Based Electrochromic Devices. IEEE Photonics Journal, 2012, 4, 2105-2115.	2.0	6
20	Dependence on the parameters of the equivalent electrical circuit model with the thickness of viologen-based electrochromic mixture on glass substrate devices. Materials Research Society Symposia Proceedings, 2011, 1328, 30401.	0.1	0
21	Highly transparent electrochromic plastic device that changes to purple and to blue by increasing the potential. Solar Energy Materials and Solar Cells, 2009, 93, 2093-2097.	6.2	23
22	Cyclopalladated Azo- and Azoxybenzene Mononuclear Complexes Containing a Chiral Chelating Ligand. Molecular Crystals and Liquid Crystals, 2007, 465, 59-70.	0.9	10
23	All-in-one Layer: Anisotropic Emission due to Light-Induced Orientation of a Multifunctional Polymer. Macromolecular Rapid Communications, 2007, 28, 932-936.	3.9	22
24	Synthesis, thermal and optical properties of liquid crystalline terpolymers containing azobenzene and dye moieties. Polymer, 2005, 46, 9230-9242.	3.8	40