
A J Coster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907187/publications.pdf Version: 2024-02-01

ALCOSTER

#	Article	IF	CITATIONS
1	Observations of Pole-to-Pole, Stratosphere-to-Ionosphere Connection. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	8
2	Coordinated Observations of Rocket Exhaust Depletion: GOLD, Madrigal TEC, and Multiple Lowâ€Earthâ€Orbit Satellites. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
3	Multiâ€Scale Density Structures in the Plasmaspheric Plume During a Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
4	2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	92
5	Temporal Evolution of Low‣atitude Plasma Blobs Identified From Multiple Measurements: ICON, GOLD, and Madrigal TEC. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	10
6	First Observations of Large Scale Traveling Ionospheric Disturbances Using Automated Amateur Radio Receiving Networks. Geophysical Research Letters, 2022, 49, .	1.5	13
7	3â€Ð Regional Ionosphere Imaging and SED Reconstruction With a New TECâ€Based Ionospheric Data Assimilation System (TIDAS). Space Weather, 2022, 20, .	1.3	15
8	Pronounced Suppression and Xâ€Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	42
9	Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Space Weather, 2022, 20, .	1.3	43
10	Multi-instrument observations of SCIPS: 1. ISR and GPS TEC results. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 213, 105515.	0.6	8
11	Conjugate Ionospheric Perturbation During the 2017 Solar Eclipse. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028531.	0.8	12
12	A New Model for Ionospheric Total Electron Content: The Impact of Solar Flux Proxies and Indices. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028466.	0.8	8
13	Solar flare effects in the Earth's magnetosphere. Nature Physics, 2021, 17, 807-812.	6.5	27
14	Cusp Dynamics and Polar Cap Patch Formation Associated With a Small IMF Southward Turning. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029090.	0.8	4
15	Evolution of Midâ€latitude Density Irregularities and Scintillation in North America During the 7–8 September 2017 Storm. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029192.	0.8	19
16	Geospace Plume and Its Impact on Dayside Magnetopause Reconnection Rate. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029117.	0.8	7
17	Variations in Thermosphere Composition and Ionosphere Total Electron Content Under "Geomagnetically Quiet―Conditions at Solarâ€Minimum. Geophysical Research Letters, 2021, 48, e2021GL093300.	1.5	40
18	Salient Midlatitude Ionosphereâ€Thermosphere Disturbances Associated With SAPS During a Minor but Geoâ€Effective Storm at Deep Solar Minimum. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029509.	0.8	24

#	Article	IF	CITATIONS
19	Impact of September 2019 Antarctic Sudden Stratospheric Warming on Midâ€Latitude Ionosphere and Thermosphere Over North America and Europe. Geophysical Research Letters, 2021, 48, e2021GL094517.	1.5	6
20	An Examination of Magnetosphereâ€lonosphere Influences During a SAPS Event. Geophysical Research Letters, 2021, 48, e2021GL095751.	1.5	4
21	Extreme Lowâ€Latitude Total Electron Content Enhancement and Global Positioning System Scintillation at Dawn. Space Weather, 2021, 19, e2021SW002740.	1.3	4
22	Electrified Postsunrise Ionospheric Perturbations at Millstone Hill. Geophysical Research Letters, 2021, 48, e2021GL095151.	1.5	18
23	Direct Connection Between Auroral Oval Streamers/Flow Channels and Equatorward Traveling Ionospheric Disturbances. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	4
24	Coordinated Groundâ€Based and Spaceâ€Based Observations of Equatorial Plasma Bubbles. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027569.	0.8	34
25	Coordinated Groundâ€Based and Spaceâ€Borne Observations of Ionospheric Response to the Annular Solar Eclipse on 26 December 2019. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028296.	0.8	12
26	Source Region and Propagation of Dayside Largeâ€6cale Traveling Ionospheric Disturbances. Geophysical Research Letters, 2020, 47, e2020GL089451.	1.5	7
27	Dayside Polar Cap Density Enhancements Formed During Substorms. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028101.	0.8	2
28	Longitudinally Dependent Low‣atitude Ionospheric Disturbances Linked to the Antarctic Sudden Stratospheric Warming of September 2019. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028199.	0.8	28
29	Leveraging Geodetic GPS Receivers for Ionospheric Scintillation Science. Radio Science, 2020, 55, e2020RS007131.	0.8	21
30	Comparison of GOLD Nighttime Measurements With Total Electron Content: Preliminary Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027767.	0.8	35
31	Coronal Electron Density Fluctuations Inferred from Akatsuki Spacecraft Radio Observations. Solar Physics, 2020, 295, 1.	1.0	11
32	Anomalous Behavior of the Equatorial Ionization Anomaly During the 2 July 2019 Solar Eclipse. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027909.	0.8	13
33	A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979–2019 Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028584.	0.8	12
34	Early Morning Equatorial Ionization Anomaly From GOLD Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027487.	0.8	15
35	Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms. Remote Sensing, 2020, 12, 228.	1.8	10
36	Direct Observations of a Polar Cap Patch Formation Associated With Dayside Reconnection Driven Fast Flow. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027745.	0.8	5

#	Article	IF	CITATIONS
37	Sequential Observations of Flux Transfer Events, Polewardâ€Moving Auroral Forms, and Polar Cap Patches. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027674.	0.8	12
38	Plasma density gradients at the edge of polar ionospheric holes: the absence of phase scintillation. Annales Geophysicae, 2020, 38, 575-590.	0.6	3
39	A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm. Annales Geophysicae, 2019, 37, 673-687.	0.6	19
40	Hemispherical Shifted Symmetry in Polar Cap Patch Occurrence: A Survey of GPS TEC Maps From 2015–2018. Geophysical Research Letters, 2019, 46, 10726-10734.	1.5	9
41	Radio Occultation Observations of the Solar Corona Over 1.60–1.86Â <i>R</i> _⊙ : Faraday Rotation and Frequency Shift Analysis. Journal of Geophysical Research: Space Physics, 2019, 124, 7761-7777.	0.8	11
42	Identification of Auroral Zone Activity Driving Largeâ€ 5 cale Traveling Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 2019, 124, 700-714.	0.8	42
43	Traveling Ionospheric Disturbances and Ionospheric Perturbations Associated With Solar Flares in September 2017. Journal of Geophysical Research: Space Physics, 2019, 124, 5894-5917.	0.8	36
44	The International Community Coordinated Modeling Center Space Weather Modeling Capabilities Assessment: Overview of Ionosphere/Thermosphere Activities. Space Weather, 2019, 17, 527-538.	1.3	14
45	Spacecraft Radio Frequency Fluctuations in the Solar Corona: A MESSENGER–HELIOS Composite Study. Astrophysical Journal, 2019, 871, 202.	1.6	19
46	Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles. Space Weather, 2019, 17, 285-298.	1.3	58
47	Solar Flare and Geomagnetic Storm Effects on the Thermosphere and Ionosphere During 6–11 September 2017. Journal of Geophysical Research: Space Physics, 2019, 124, 2298-2311.	0.8	67
48	Polar Cap Patch Prediction in the Expanding Contracting Polar Cap Paradigm. Space Weather, 2019, 17, 1570-1583.	1.3	1
49	Subauroral and Polar Traveling Ionospheric Disturbances During the 7–9 September 2017 Storms. Space Weather, 2019, 17, 1748-1764.	1.3	50
50	Fieldâ€Aligned GPS Scintillation: Multisensor Data Fusion. Journal of Geophysical Research: Space Physics, 2018, 123, 974-992.	0.8	16
51	An Ionosphere Specification Technique Based on Data Ingestion Algorithm and Empirical Orthogonal Function Analysis Method. Space Weather, 2018, 16, 1410-1423.	1.3	15
52	Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event. Space Weather, 2018, 16, 1686-1701.	1.3	22
53	TID Observations and Source Analysis During the 2017 Memorial Day Weekend Geomagnetic Storm Over North America. Journal of Geophysical Research: Space Physics, 2018, 123, 8749-8765.	0.8	34
54	lonospheric Response to the Solar Eclipse of 21 August 2017 in Millstone Hill (42N) Observations. Geophysical Research Letters, 2018, 45, 4601-4609.	1.5	33

#	Article	IF	CITATIONS
55	Deep Ionospheric Hole Created by Sudden Stratospheric Warming in the Nighttime Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 7621-7633.	0.8	25
56	Effects of the September 2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM. Journal of Geophysical Research: Space Physics, 2018, 123, 5747-5763.	0.8	19
57	Gaussian Markov Random Field Priors in Ionospheric 3-D Multi-Instrument Tomography. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 7009-7021.	2.7	23
58	A New Empirical Model of the Subauroral Polarization Stream. Journal of Geophysical Research: Space Physics, 2018, 123, 7342-7357.	0.8	16
59	Observations of ionâ€neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 2017, 122, 1314-1337.	0.8	57
60	lonospheric F-region observations over American sector during an intense space weather event using multi-instruments. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 156, 1-14.	0.6	21
61	PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2017, 122, 2589-2604.	0.8	19
62	Faraday rotation fluctuations of MESSENGER radio signals through the equatorial lower corona near solar minimum. Space Weather, 2017, 15, 310-324.	1.3	8
63	SAMI3â€RCM simulation of the 17 March 2015 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2017, 122, 1246-1257.	0.8	33
64	GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment. Geophysical Research Letters, 2017, 44, 9539-9546.	1.5	18
65	CEDARâ€GEM Challenge for Systematic Assessment of Ionosphere/Thermosphere Models in Predicting TEC During the 2006 December Storm Event. Space Weather, 2017, 15, 1238-1256.	1.3	17
66	Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 2017, 44, 12,067.	1.5	91
67	GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 2017, 44, 12,041.	1.5	97
68	GPS Data Processing for Scientific Studies of the Earth's Atmosphere and Near-Space Environment. , 2017, , 805-816.		0
69	Statistical framework for estimating GNSS bias. Atmospheric Measurement Techniques, 2016, 9, 1303-1312.	1.2	92
70	The geomagnetic storm time response of GPS total electron content in the North American sector. Journal of Geophysical Research: Space Physics, 2016, 121, 1744-1759.	0.8	41
71	Reply to comment by Kil et al. on "The night when the auroral and equatorial ionospheres converged― Journal of Geophysical Research: Space Physics, 2016, 121, 10,608-10,613.	0.8	2
72	GNSSâ€ISR data fusion: General framework with application to the highâ€latitude ionosphere. Radio Science, 2016, 51, 118-129.	0.8	5

#	Article	IF	CITATIONS
73	Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015. Geophysical Research Letters, 2016, 43, 2422-2428.	1.5	26
74	Daytime midlatitude plasma depletions observed by Swarm: Topside signatures of the rocket exhaust. Geophysical Research Letters, 2016, 43, 1802-1809.	1.5	21
75	Ionospheric data assimilation and forecasting during storms. Journal of Geophysical Research: Space Physics, 2016, 121, 764-778.	0.8	51
76	GPS Data Processing for Scientific Studies of the Earth's Atmosphere and Near-Space Environment. , 2016, , 1-12.		2
77	Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophysical Research Letters, 2015, 42, 5132-5140.	1.5	59
78	Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector. Journal of Geophysical Research: Space Physics, 2015, 120, 7889-7902.	0.8	42
79	Influences of the dayâ€night differences of ionospheric variability on the estimation of GPS differential code bias. Radio Science, 2015, 50, 339-353.	0.8	10
80	EOF analysis and modeling of GPS TEC climatology over North America. Journal of Geophysical Research: Space Physics, 2015, 120, 3118-3129.	0.8	47
81	Detection of traveling ionospheric disturbances by mediumâ€frequency Doppler sounding using AM radio transmissions. Radio Science, 2015, 50, 249-263.	0.8	9
82	Multiâ€instrument, highâ€resolution imaging of polar cap patch transportation. Radio Science, 2015, 50, 904-915.	0.8	12
83	The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 2015, 120, 8085-8095.	0.8	24
84	lonospheric response to CIRâ€induced recurrent geomagnetic activity during the declining phase of solar cycle 23. Journal of Geophysical Research: Space Physics, 2015, 120, 1394-1418.	0.8	23
85	WHY SOUTH AMERICA IS A GREAT PLACE TO DO SPACE PHYSICS: SPATIAL AND TEMPORAL EXTENT OF IONOSPHERIC ANOMALIES DURING SUDDEN STRATOSPHERIC WARMINGS. , 2015, , .		0
86	Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophysical Research Letters, 2014, 41, 762-768.	1.5	65
87	Mobile crowd sensing in space weather monitoring: the mahali project. , 2014, 52, 22-28.		43
88	On the generation/decay of the stormâ€enhanced density plumes: Role of the convection flow and fieldâ€aligned ion flow. Journal of Geophysical Research: Space Physics, 2014, 119, 8543-8559.	0.8	74
89	Intercepted signals for ionospheric science. Radio Science, 2013, 48, 248-264.	0.8	2
90	Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Science, 2013, 48, 190-196.	0.8	90

#	Article	IF	CITATIONS
91	Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 2013, 118, 1180-1189.	0.8	93
92	Ionospheric effects of sudden stratospheric warming during moderateâ€ŧoâ€high solar activity: Case study of January 2013. Geophysical Research Letters, 2013, 40, 4982-4986.	1.5	102
93	Diurnal Variation of TEC and S 4 Index During the Period of Low Geomagnetic Activity at Ile-Ife, Nigeria. Arabian Journal for Science and Engineering, 2013, 38, 1807-1813.	1.1	3
94	Electrodynamics of the highâ€latitude trough: Its relationship with convection flows and fieldâ€aligned currents. Journal of Geophysical Research: Space Physics, 2013, 118, 2565-2572.	0.8	21
95	Science with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	260
96	GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Annales Geophysicae, 2013, 31, 805-816.	0.6	53
97	Ionospheric symmetry caused by geomagnetic declination over North America. Geophysical Research Letters, 2013, 40, 5350-5354.	1.5	22
98	Multiâ€instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 2013, 118, 7798-7809.	0.8	53
99	The potential role of stratospheric ozone in the stratosphereâ€ionosphere coupling during stratospheric warmings. Geophysical Research Letters, 2012, 39, .	1.5	104
100	Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. Journal of Geophysical Research, 2012, 117, .	3.3	68
101	Using the Murchison Widefield Array to observe midlatitude space weather. Radio Science, 2012, 47, .	0.8	19
102	lonospheric and thermospheric variations associated with prompt penetration electric fields. Journal of Geophysical Research, 2012, 117, .	3.3	74
103	Ionospheric observations during the geomagnetic storm events on 24–27 July 2004: Longâ€duration positive storm effects. Journal of Geophysical Research, 2012, 117, .	3.3	30
104	Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Transactions on Plasma Science, 2012, 40, 1267-1286.	0.6	58
105	Largeâ€scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations. Journal of Geophysical Research, 2012, 117, .	3.3	51
106	Ionospheric longitudinal variations at midlatitudes: Incoherent scatter radar observation at Millstone Hill. Science China Technological Sciences, 2012, 55, 1153-1160.	2.0	20
107	GPS TEC observations of dynamics of the mid-latitude trough during substorms. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
108	East-West Coast differences in total electron content over the continental US. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	67

#	Article	IF	CITATIONS
109	Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September 2002. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
110	Characterization of system calibration parameters for high gain dual polarization satellite beacon diagnostics of ionospheric variations. Radio Science, 2011, 46, .	0.8	3
111	Intercepted Signals for Ionospheric Science. , 2011, , .		3
112	Impact of sudden stratospheric warmings on equatorial ionization anomaly. Journal of Geophysical Research, 2010, 115, .	3.3	197
113	Unexpected connections between the stratosphere and ionosphere. Geophysical Research Letters, 2010, 37, .	1.5	241
114	Ionospheric response to the initial phase of geomagnetic storms: Common features. Journal of Geophysical Research, 2010, 115, .	3.3	75
115	Decameter structure in heaterâ€induced airglow at the High frequency Active Auroral Research Program facility. Journal of Geophysical Research, 2010, 115, .	3.3	22
116	Studies of storm-enhanced density impact on DGPS using IGS reference station data. Journal of Geodesy, 2009, 83, 235-240.	1.6	11
117	Monitoring storm-enhanced density using IGS reference station data. Journal of Geodesy, 2009, 83, 345-351.	1.6	30
118	Did Tsunami‣aunched Gravity Waves Trigger Ionospheric Turbulence over Arecibo?. Journal of Geophysical Research, 2008, 113, .	3.3	24
119	Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. Journal of Geophysical Research, 2008, 113, .	3.3	120
120	Potential for issuing ionospheric warnings to Canadian users of marine DGPS. Space Weather, 2008, 6,	1.3	1
121	Large magnetic stormâ€induced nighttime ionospheric flows at midlatitudes and their impacts on GPSâ€based navigation systems. Journal of Geophysical Research, 2008, 113, .	3.3	53
122	Space Weather and the Global Positioning System. Space Weather, 2008, 6, .	1.3	68
123	Manâ€made space weather. Space Weather, 2008, 6, .	1.3	32
124	Extreme polar cap density enhancements along magnetic field lines during an intense geomagnetic storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	16
125	Overview of Midlatitude Ionospheric Storms. Eos, 2007, 88, 358.	0.1	6
126	Longitude sector comparisons of storm enhanced density. Geophysical Research Letters, 2007, 34, .	1.5	52

#	Article	IF	CITATIONS
127	Mediumâ€scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophysical Research Letters, 2007, 34, .	1.5	194
128	Summerâ€winter hemispheric asymmetry of the sudden increase in ionospheric total electron content and of the O/N ₂ ratio: Solar activity dependence. Journal of Geophysical Research, 2007, 112, .	3.3	15
129	Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1253-1272.	0.6	68
130	Conjugate localized enhancement of total electron content at low latitudes in the American sector. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1241-1252.	0.6	48
131	Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMFBy. Journal of Geophysical Research, 2006, 111, .	3.3	31
132	Automated GPS processing for global total electron content data. GPS Solutions, 2006, 10, 219-228.	2.2	432
133	Redistribution of the stormtime ionosphere and the formation of a plasmaspheric bulge. Geophysical Monograph Series, 2005, , 277-289.	0.1	25
134	The ionospheric impact of the October 2003 storm event on Wide Area Augmentation System. GPS Solutions, 2005, 9, 41-50.	2.2	34
135	A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network. Journal of Geophysical Research, 2005, 110, .	3.3	100
136	Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 2005, 110,	3.3	255
137	The GPS ionospheric working group. GPS Solutions, 2004, 8, 184-188.	2.2	1
138	Space weather effects of October?November 2003. GPS Solutions, 2004, 8, 267-271.	2.2	78
139	A technique for calculating meteor plasma density and meteoroid mass from radar head echo scattering. Icarus, 2004, 168, 43-52.	1.1	75
140	Imaging the structure of a large-scale TID using ISR and TEC data. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	100
141	Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophysical Research Letters, 2004, 31, .	1.5	99
142	A quantitative explanation for the phenomenon known as storm-enhanced density. Geophysical Research Letters, 2004, 31, .	1.5	122
143	Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. Journal of Geophysical Research, 2004, 109, .	3.3	401
144	Performance Evaluation of the Wide Area Augmentation System for Ionospheric Storm Events. The Journal of Global Positioning Systems, 2004, 3, 251-258.	1.6	24

#	ARTICLE	IF	CITATIONS
145	Operational impacts of space weather. Geophysical Research Letters, 2003, 30, .	1.5	9
146	Ionospheric signatures of plasmaspheric tails. Geophysical Research Letters, 2002, 29, 1-1.	1.5	270
147	Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI. Journal of Atmospheric and Oceanic Technology, 2001, 18, 830-850.	0.5	233
148	Real-Time Ionospheric Monitoring System Using GPS. Navigation, Journal of the Institute of Navigation, 1992, 39, 191-204.	1.7	64
149	lonospheric and tropospheric path delay obtained from GPS integrated phase, incoherent scatter and refractometer data and from IRI-86. Advances in Space Research, 1990, 10, 105-108.	1.2	8
150	Evaluation of thermospheric models and the precipitation index for satellite drag. Advances in Space Research, 1990, 10, 303-309.	1.2	2
151	Evaluation of recent atmospheric density models. Advances in Space Research, 1986, 6, 157-165.	1.2	11
152	The temporal evolution of 3â€n striations in the modified ionosphere. Journal of Geophysical Research, 1985, 90, 2807-2818.	3.3	52
153	Ionospheric Storms at Mid-Latitude: A Short Review. Geophysical Monograph Series, 0, , 9-24.	0.1	48
154	The Mid-Latitude Trough-Revisited. Geophysical Monograph Series, 0, , 25-33.	0.1	26
155	Assimilation of Observations with Models to Better Understand Severe Ionospheric Weather at Mid-Latitudes. Geophysical Monograph Series, 0, , 35-49.	0.1	1
156	Disturbed O/N ₂ Ratios and their Transport to Middle and Low Latitudes. Geophysical Monograph Series, 0, , 221-234.	0.1	18
157	Ionospheric-Magnetospheric-Heliospheric Coupling: Storm-Time Thermal Plasma Redistribution. Geophysical Monograph Series, 0, , 121-134.	0.1	20
158	Thermospheric Dynamics at Low and Mid-Latitudes During Magnetic Storm Activity. Geophysical Monograph Series, 0, , 201-219.	0.1	7
159	Low- and Middle-Latitude Ionospheric Dynamics Associated with Magnetic Storms. Geophysical Monograph Series, 0, , 51-61.	0.1	11
160	Irregularities within Subauroral Polarization Stream-Related Troughs and GPS Radio Interference at Midlatitudes. Geophysical Monograph Series, 0, , 291-295.	0.1	24
161	New lightningâ€derived vertical total electron content data provides unique global ionospheric measurements. Space Weather, 0, , .	1.3	0