
James P Allison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The future of immune checkpoint therapy. Science, 2015, 348, 56-61.	6.0	3,735
2	Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439, 682-687.	13.7	3,471
3	Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science, 1996, 271, 1734-1736.	6.0	3,231
4	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	6.0	3,126
5	Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 2018, 8, 1069-1086.	7.7	2,128
6	CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation Journal of Experimental Medicine, 1995, 182, 459-465.	4.2	1,922
7	Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell, 2014, 25, 719-734.	7.7	1,892
8	Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell, 2015, 161, 205-214.	13.5	1,872
9	Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. New England Journal of Medicine, 2012, 366, 925-931.	13.9	1,836
10	Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515, 577-581.	13.7	1,705
11	PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4275-4280.	3.3	1,602
12	CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 1992, 356, 607-609.	13.7	1,516
13	Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8372-8377.	3.3	1,482
14	Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. Journal of Experimental Medicine, 2013, 210, 1695-1710.	4.2	1,203
15	The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clinical Cancer Research, 2009, 15, 5323-5337.	3.2	1,177
16	Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 2012, 482, 400-404.	13.7	1,075
17	Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell, 2016, 167, 397-404.e9.	13.5	1,009
18	Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell, 2017, 170, 1120-1133.e17.	13.5	960

#	Article	IF	CITATIONS
19	Synergism of Cytotoxic T Lymphocyte–Associated Antigen 4 Blockade and Depletion of Cd25+ Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses. Journal of Experimental Medicine, 2001, 194, 823-832.	4.2	959
20	Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation. Journal of Experimental Medicine, 1999, 190, 355-366.	4.2	951
21	Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4712-4717.	3.3	940
22	CTLA-4-MEDIATEDINHIBITION INREGULATION OFT CELLRESPONSES: Mechanisms and Manipulation in Tumor Immunotherapy. Annual Review of Immunology, 2001, 19, 565-594.	9.5	905
23	CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology, 2002, 3, 611-618.	7.0	843
24	ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature, 2001, 409, 97-101.	13.7	840
25	CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells Journal of Experimental Medicine, 1996, 183, 2533-2540.	4.2	837
26	Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. Journal of Experimental Medicine, 2009, 206, 1717-1725.	4.2	785
27	Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discovery, 2016, 6, 827-837.	7.7	785
28	BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunology, 2003, 4, 670-679.	7.0	768
29	Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nature Medicine, 2015, 21, 998-1009.	15.2	736
30	Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. Journal of Experimental Medicine, 2010, 207, 637-650.	4.2	715
31	Co-occurring Genomic Alterations Define Major Subsets of <i>KRAS</i> -Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discovery, 2015, 5, 860-877.	7.7	696
32	Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Science Translational Medicine, 2017, 9, .	5.8	689
33	Cancer classification using the Immunoscore: a worldwide task force. Journal of Translational Medicine, 2012, 10, 205.	1.8	676
34	Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clinical Cancer Research, 2005, 11, 728-34.	3.2	662
35	Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 2016, 7, 12632.	5.8	648
36	CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. Journal of Clinical Investigation, 2006, 116, 1935-1945.	3.9	605

#	Article	IF	CITATIONS
37	Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3005-3010.	3.3	604
38	Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Science Translational Medicine, 2014, 6, 226ra32.	5.8	590
39	The Emerging Role of CTLA-4 as an Immune Attenuator. Immunity, 1997, 7, 445-450.	6.6	582
40	Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. Journal of Experimental Medicine, 2013, 210, 1389-1402.	4.2	562
41	Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nature Reviews Cancer, 2011, 11, 805-812.	12.8	554
42	PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5336-5341.	3.3	536
43	Limited diversity of γδ antigen receptor genes of thy-1+ dendritic epidermal cells. Cell, 1988, 55, 837-847.	13.5	523
44	Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nature Medicine, 2018, 24, 1804-1808.	15.2	521
45	Checkpoint Blockade in Cancer Immunotherapy. Advances in Immunology, 2006, 90, 297-339.	1.1	498
46	Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Medicine, 2011, 17, 1094-1100.	15.2	476
47	VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nature Medicine, 2017, 23, 551-555.	15.2	467
48	Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 147-164.	1.8	459
49	Immune Modulation in Cancer with Antibodies. Annual Review of Medicine, 2014, 65, 185-202.	5.0	455
50	Cytotoxic T Lymphocyte Antigen-4 Accumulation in the Immunological Synapse Is Regulated by TCR Signal Strength. Immunity, 2002, 16, 23-35.	6.6	452
51	Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nature Communications, 2017, 8, 15095.	5.8	432
52	Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Current Opinion in Immunology, 2006, 18, 206-213.	2.4	426
53	Singleâ€institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting. Cancer, 2010, 116, 1767-1775.	2.0	405
54	Preoperative CTLA-4 Blockade: Tolerability and Immune Monitoring in the Setting of a Presurgical Clinical Trial. Clinical Cancer Research, 2010, 16, 2861-2871.	3.2	404

#	Article	IF	CITATIONS
55	Co-stimulation in T cell responses. Current Opinion in Immunology, 1997, 9, 396-404.	2.4	401
56	B7-1 and B7-2 Selectively Recruit CTLA-4 and CD28 to the Immunological Synapse. Immunity, 2004, 21, 401-413.	6.6	390
57	Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Reports, 2015, 13, 412-424.	2.9	387
58	A Pilot Trial of CTLA-4 Blockade with Human Anti-CTLA-4 in Patients with Hormone-Refractory Prostate Cancer. Clinical Cancer Research, 2007, 13, 1810-1815.	3.2	385
59	Lymphoproliferation in CTLA-4–Deficient Mice Is Mediated by Costimulation-Dependent Activation of CD4 + T Cells. Immunity, 1997, 7, 885-895.	6.6	384
60	Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discovery, 2019, 9, 370-383.	7.7	380
61	Epitope Landscape in Breast and Colorectal Cancer. Cancer Research, 2008, 68, 889-892.	0.4	373
62	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	6.0	369
63	Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8099-8103.	3.3	364
64	The Next Decade of Immune Checkpoint Therapy. Cancer Discovery, 2021, 11, 838-857.	7.7	363
65	B7x: A widely expressed B7 family member that inhibits T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10388-10392.	3.3	362
66	Costimulatory regulation of T cell function. Current Opinion in Cell Biology, 1999, 11, 203-210.	2.6	359
67	Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nature Medicine, 2021, 27, 504-514.	15.2	357
68	CTLA-4 blockade synergizes with tumor-derived granulocyte- macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10067-10071.	3.3	356
69	B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19458-19463.	3.3	336
70	CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20410-20415.	3.3	322
71	Integrated NY-ESO-1 antibody and CD8 ⁺ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16723-16728.	3.3	310
72	The B7 Family and Cancer Therapy: Costimulation and Coinhibition. Clinical Cancer Research, 2007, 13, 5271-5279.	3.2	308

#	Article	IF	CITATIONS
73	Elucidating the Autoimmune and Antitumor Effector Mechanisms of a Treatment Based on Cytotoxic T Lymphocyte Antigen-4 Blockade in Combination with a B16 Melanoma Vaccine. Journal of Experimental Medicine, 2001, 194, 481-490.	4.2	307
74	Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature, 1990, 344, 68-70.	13.7	299
75	CD28-B7 interactions in T-cell activation. Current Opinion in Immunology, 1994, 6, 414-419.	2.4	298
76	Systemic CTLA-4 Blockade Ameliorates Glioma-Induced Changes to the CD4+ T Cell Compartment without Affecting Regulatory T-Cell Function. Clinical Cancer Research, 2007, 13, 2158-2167.	3.2	293
77	Aire-Dependent Thymic Development of Tumor-Associated Regulatory T Cells. Science, 2013, 339, 1219-1224.	6.0	282
78	Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Regulates the Unfolding of Autoimmune Diabetes. Journal of Experimental Medicine, 1998, 187, 427-432.	4.2	277
79	Dissecting the mechanisms of immune checkpoint therapy. Nature Reviews Immunology, 2020, 20, 75-76.	10.6	275
80	Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Annals of the New York Academy of Sciences, 2013, 1291, 1-13.	1.8	270
81	Combining Radiation and Immunotherapy: A New Systemic Therapy for Solid Tumors?. Cancer Immunology Research, 2014, 2, 831-838.	1.6	270
82	Expression of Helios in Peripherally Induced Foxp3+ Regulatory T Cells. Journal of Immunology, 2012, 188, 976-980.	0.4	268
83	CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help Journal of Experimental Medicine, 1993, 177, 1791-1796.	4.2	265
84	Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers. Clinical Cancer Research, 2019, 25, 1233-1238.	3.2	260
85	Potent Induction of Tumor Immunity by Combining Tumor Cryoablation with Anti–CTLA-4 Therapy. Cancer Research, 2012, 72, 430-439.	0.4	248
86	TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. Journal of Experimental Medicine, 2010, 207, 1701-1711.	4.2	244
87	Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. Journal of Experimental Medicine, 2014, 211, 715-725.	4.2	242
88	Structure, Function, and Serology of the T-Cell Antigen Receptor Complex. Annual Review of Immunology, 1987, 5, 503-540.	9.5	240
89	Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nature Medicine, 2020, 26, 39-46.	15.2	236
90	Augmentation of T Cell Levels and Responses Induced by Androgen Deprivation. Journal of Immunology, 2004, 173, 6098-6108.	0.4	234

#	Article	IF	CITATIONS
91	Alternative Activation Is an Innate Response to Injury That Requires CD4+ T Cells to be Sustained during Chronic Infection. Journal of Immunology, 2007, 179, 3926-3936.	0.4	230
92	Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunological Reviews, 2011, 241, 104-118.	2.8	229
93	Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22699-22709.	3.3	226
94	The mouse T cell receptor: Structural heterogeneity of molecules of normal T cells defined by Xenoantiserum. Cell, 1983, 34, 739-746.	13.5	220
95	CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008, 112, 1175-1183.	0.6	217
96	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	15.2	216
97	Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15074-15079.	3.3	214
98	Anti–CTLA-4 Antibody Therapy: Immune Monitoring During Clinical Development of a Novel Immunotherapy. Seminars in Oncology, 2010, 37, 473-484.	0.8	208
99	Cell intrinsic mechanisms of Tâ€cell inhibition and application to cancer therapy. Immunological Reviews, 2008, 224, 141-165.	2.8	207
100	Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Modern Pathology, 2010, 23, 1104-1112.	2.9	204
101	Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11919-11924.	3.3	197
102	Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Current Opinion in Immunology, 2010, 22, 326-332.	2.4	195
103	Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Research, 2017, 77, 839-850.	0.4	195
104	Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nature Medicine, 2020, 26, 1845-1851.	15.2	193
105	Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production. PLoS ONE, 2011, 6, e19499.	1.1	189
106	Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. Journal of Experimental Medicine, 2008, 205, 2125-2138.	4.2	185
107	T Cell Immunoglobulin Mucin-3 Crystal Structure Reveals a Galectin-9-Independent Ligand-Binding Surface. Immunity, 2007, 26, 311-321.	6.6	183
108	Strength of TCR–Peptide/MHC Interactions and In Vivo T Cell Responses. Journal of Immunology, 2011, 186, 5039-5045.	0.4	182

#	Article	IF	CITATIONS
109	Increased Frequency of ICOS+ CD4 T Cells as a Pharmacodynamic Biomarker for Anti-CTLA-4 Therapy. Cancer Immunology Research, 2013, 1, 229-234.	1.6	178
110	Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9273-9278.	3.3	175
111	A Pilot Study of Preoperative Single-Dose Ipilimumab and/or Cryoablation in Women with Early-Stage Breast Cancer with Comprehensive Immune Profiling. Clinical Cancer Research, 2016, 22, 5729-5737.	3.2	175
112	The Yin and Yang of T Cell Costimulation. Science, 1995, 270, 932-932.	6.0	172
113	Modulation of EZH2 expression in T cells improves efficacy of anti–CTLA-4 therapy. Journal of Clinical Investigation, 2018, 128, 3813-3818.	3.9	169
114	The T cell antigen receptor complex expressed on normal peripheral blood CD4-, CD8- T lymphocytes. A CD3-associated disulfide-linked gamma chain heterodimer Journal of Experimental Medicine, 1987, 165, 1076-1094.	4.2	168
115	TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Discovery, 2017, 7, 1088-1097.	7.7	160
116	Manipulation of costimulatory signals to enhance antitumor T-cell responses. Current Opinion in Immunology, 1995, 7, 682-686.	2.4	158
117	Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. Journal of Experimental Medicine, 2013, 210, 743-755.	4.2	157
118	In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11476-11481.	3.3	155
119	Single dose of anti–CTLA-4 enhances CD8 ⁺ T-cell memory formation, function, and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 266-271.	3.3	151
120	Anti–CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers—Response. Clinical Cancer Research, 2019, 25, 3469-3470.	3.2	151
121	Negative regulators of Tâ€cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunological Reviews, 2009, 229, 67-87.	2.8	150
122	A Genetic Mouse Model Recapitulates Immune Checkpoint Inhibitor–Associated Myocarditis and Supports a Mechanism-Based Therapeutic Intervention. Cancer Discovery, 2021, 11, 614-625.	7.7	145
123	Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Research, 2015, 25, 208-224.	5.7	143
124	Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proceedings of the United States of America, 2019, 116, 22246-22251.	3.3	142
125	Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nature Communications, 2020, 11, 603.	5.8	140
126	Defining the critical hurdles in cancer immunotherapy. Journal of Translational Medicine, 2011, 9, 214.	1.8	139

#	Article	IF	CITATIONS
127	Deep Sequencing of T-cell Receptor DNA as a Biomarker of Clonally Expanded TILs in Breast Cancer after Immunotherapy. Cancer Immunology Research, 2016, 4, 835-844.	1.6	138
128	Thymocyte development is normal in CTLA-4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9296-9301.	3.3	137
129	Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight, 2020, 5, .	2.3	130
130	Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. International Immunology, 1996, 8, 519-523.	1.8	128
131	Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clinical and Experimental Immunology, 2009, 157, 9-19.	1.1	126
132	Tumor Vaccines Expressing Flt3 Ligand Synergize with CTLA-4 Blockade to Reject Preimplanted Tumors. Cancer Research, 2009, 69, 7747-7755.	0.4	120
133	Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. Npj Genomic Medicine, 2017, 2, .	1.7	120
134	Murine Ia and human DR antigens: homology of amino-terminal sequences Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 3953-3956.	3.3	119
135	Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4+ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8603-8608.	3.3	119
136	B7 Expression on T Cells Down-Regulates Immune Responses through CTLA-4 Ligation via R-T Interactions. Journal of Immunology, 2004, 172, 34-39.	0.4	118
137	Two Distinct Mechanisms of Augmented Antitumor Activity by Modulation of Immunostimulatory/Inhibitory Signals. Clinical Cancer Research, 2010, 16, 2781-2791.	3.2	118
138	CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine, 2004, 22, 1700-1708.	1.7	116
139	Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell, 2022, 40, 509-523.e6.	7.7	115
140	CTLA-4 Overexpression Inhibits T Cell Responses through a CD28-B7-Dependent Mechanism. Journal of Immunology, 2006, 177, 1052-1061.	0.4	112
141	Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nature Communications, 2017, 8, 14340.	5.8	110
142	T Cell Surveillance of Oncogene-Induced Prostate Cancer Is Impeded by T Cell-Derived TGF-β1 Cytokine. Immunity, 2011, 35, 123-134.	6.6	109
143	Enhancement of Tumor-Reactive Cytotoxic CD4+ T-cell Responses after Ipilimumab Treatment in Four Advanced Melanoma Patients. Cancer Immunology Research, 2013, 1, 235-244.	1.6	109
144	Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Science Translational Medicine, 2020, 12, .	5.8	108

#	Article	IF	CITATIONS
145	HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nature Communications, 2017, 8, 451.	5.8	107
146	Recognition of a Ubiquitous Self Antigen by Prostate Cancer-Infiltrating CD8 ⁺ T Lymphocytes. Science, 2008, 319, 215-220.	6.0	103
147	Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade. Cancer Immunology Research, 2018, 6, 189-200.	1.6	102
148	Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. Journal of Neuroimmunology, 1997, 73, 57-62.	1.1	99
149	Attenuated T Cell Responses to a High-Potency Ligand In Vivo. PLoS Biology, 2010, 8, e1000481.	2.6	99
150	Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17765-17770.	3.3	97
151	Simultaneous inhibition of two regulatory T-cell subsets enhanced Interleukin-15 efficacy in a prostate tumor model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6187-6192.	3.3	97
152	Engagement of NKG2D by Cognate Ligand or Antibody Alone Is Insufficient to Mediate Costimulation of Human and Mouse CD8+ T Cells. Journal of Immunology, 2005, 174, 1922-1931.	0.4	96
153	Activation and differentiation requirements of primary T cells in vitro Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8987-8991.	3.3	95
154	Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12204-12209.	3.3	95
155	Cutting Edge: CTLA-4 on Effector T Cells Inhibits In <i>Trans</i> . Journal of Immunology, 2012, 189, 1123-1127.	0.4	94
156	Interdependent IL-7 and IFN-Î ³ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nature Communications, 2016, 7, 12335.	5.8	93
157	Repression of B7.2 on Self-reactive B Cells Is Essential to Prevent Proliferation and Allow Fas-mediated Deletion by CD4+ T Cells. Journal of Experimental Medicine, 1998, 188, 651-659.	4.2	89
158	Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dose Radiation–Related Abscopal Responses. Cancer Immunology Research, 2019, 7, 1903-1909.	1.6	86
159	Identification of antigen receptor-associated structures on murine T cells. Nature, 1985, 314, 107-109.	13.7	85
160	Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses. Proceedings of the United States of America, 2012, 109, 881-886.	3.3	84
161	Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy, 2015, 7, 967-980.	1.0	83
162	CTLA-4 blockade increases antigen-specific CD8+ T cells in prevaccinated patients with melanoma: three cases. Cancer Immunology, Immunotherapy, 2011, 60, 1137-1146.	2.0	82

#	Article	IF	CITATIONS
163	<i>ARID1A</i> mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Science Translational Medicine, 2020, 12, .	5.8	82
164	Unique potential of 4-1BB agonist antibody to promote durable regression of HPV ⁺ tumors when combined with an E6/E7 peptide vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5290-9.	3.3	79
165	CD28 disruption exacerbates inflammation in Tgf- \hat{I}^2 1-/- mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF- \hat{I}^2 1. Blood, 2004, 103, 4594-4601.	0.6	75
166	Immune Checkpoint Blockade in Cancer Therapy. JAMA - Journal of the American Medical Association, 2015, 314, 1113.	3.8	75
167	Negative Co-stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States. Immunity, 2019, 50, 1084-1098.e10.	6.6	75
168	Serum-Soluble B7x Is Elevated in Renal Cell Carcinoma Patients and Is Associated with Advanced Stage. Cancer Research, 2008, 68, 6054-6058.	0.4	71
169	Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3013-3017.	3.3	69
170	Cytotoxic T Lymphocyte Antigen-4 Blockade Enhances Antitumor Immunity by Stimulating Melanoma-Specific T-cell Motility. Cancer Immunology Research, 2014, 2, 970-980.	1.6	68
171	A subset of T cell receptors associated with L3T4 molecules mediates C6VL leukemia cell binding of its cognate retrovirus. Cell, 1987, 49, 143-151.	13.5	66
172	Prostate Cancer Progression Correlates with Increased Humoral Immune Response to a Human Endogenous Retrovirus GAG Protein. Clinical Cancer Research, 2013, 19, 6112-6125.	3.2	66
173	Targeting Immunosupportive Cancer Therapies: Accentuate the Positive, Eliminate the Negative. Cancer Cell, 2007, 12, 192-199.	7.7	65
174	Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates the size, reactivity, and function of a primed pool of CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12711-12716.	3.3	64
175	Selective inhibition of autoimmune exacerbation while preserving the anti-tumor clinical benefit using IL-6 blockade in a patient with advanced melanoma and Crohn's disease: a case report. Journal of Hematology and Oncology, 2016, 9, 81.	6.9	62
176	The role of short homology repeats and TdT in generation of the invariant γδ antigen receptor repertoire in the fetal thymus. Immunity, 1995, 3, 439-447.	6.6	61
177	Pilot Phase II Trial of Neoadjuvant Immunotherapy in Locoregionally Advanced, Resectable Cutaneous Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2021, 27, 4557-4565.	3.2	61
178	The T-cell antigen receptor gamma gene: rearrangement and cell lineages. Trends in Immunology, 1987, 8, 293-296.	7.5	60
179	T cell receptor-triggered activation of intraepithelial lymphocytes in vitro. International Immunology, 1993, 5, 145-153.	1.8	59
180	Insolubilization of L-asparaginase by covalent attachment to nylon tubing. Biochemical and Biophysical Research Communications, 1972, 47, 66-73.	1.0	58

#	Article	IF	CITATIONS
181	The Role of B7 Costimulation in CD4/CD8 T Cell Homeostasis. Journal of Immunology, 2000, 164, 3543-3553.	0.4	56
182	Identification of dipeptidyl peptidase IV as a protein shared by the plasma membrane of hepatocytes and liver biomatrix. Experimental Cell Research, 1985, 158, 509-518.	1.2	55
183	γδT-cell development. Current Opinion in Immunology, 1993, 5, 241-246.	2.4	55
184	B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood, 2015, 125, 3335-3346.	0.6	55
185	Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncolmmunology, 2016, 5, e1136044.	2.1	55
186	Cutting Edge: A Crucial Role for B7-CD28 in Transmitting T Help from APC to CTL. Journal of Immunology, 2002, 169, 4094-4097.	0.4	54
187	Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunology, Immunotherapy, 2008, 57, 1263-1270.	2.0	54
188	Tissue-specific expression of B7x protects from CD4 T cell–mediated autoimmunity. Journal of Experimental Medicine, 2011, 208, 1683-1694.	4.2	54
189	Immunologic Correlates of Pathologic Complete Response to Preoperative Immunotherapy in Hepatocellular Carcinoma. Cancer Immunology Research, 2019, 7, 1390-1395.	1.6	54
190	TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10453-10462.	3.3	53
191	LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. Journal of Experimental Medicine, 2021, 218, .	4.2	53
192	Lack of a role for transforming growth factor-Â in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2587-2592.	3.3	50
193	Regulated Costimulation in the Thymus Is Critical for T Cell Development: Dysregulated CD28 Costimulation Can Bypass the Pre-TCR Checkpoint. Journal of Immunology, 2005, 175, 4199-4207.	0.4	50
194	Itk Negatively Regulates Induction of  T Cell Proliferation by CD28 Costimulation. Journal of Experimental Medicine, 1997, 186, 221-228.	4.2	48
195	Immunological Insights from Patients Undergoing Surgery on Ipilimumab for Metastatic Melanoma. Annals of Surgical Oncology, 2013, 20, 3106-3111.	0.7	47
196	ICOS Promotes the Function of CD4+ Effector T Cells during Anti-OX40–Mediated Tumor Rejection. Cancer Research, 2016, 76, 3684-3689.	0.4	47
197	Co-stimulatory pathways in lymphocyte regulation: the immunoglobulin superfamily. British Journal of Haematology, 2005, 130, 809-824.	1.2	46
198	SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3509-3514.	3.3	46

#	Article	IF	CITATIONS
199	Augmented IL-15Rα Expression by CD40 Activation Is Critical in Synergistic CD8 T Cell-Mediated Antitumor Activity of Anti-CD40 Antibody with IL-15 in TRAMP-C2 Tumors in Mice. Journal of Immunology, 2012, 188, 6156-6164.	0.4	46
200	Metastatic Melanoma Patient Had a Complete Response with Clonal Expansion after Whole Brain Radiation and PD-1 Blockade. Cancer Immunology Research, 2017, 5, 100-105.	1.6	46
201	Intrathymic differentiation of V gamma 3 T cells Journal of Experimental Medicine, 1993, 178, 309-315.	4.2	45
202	Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nature Communications, 2021, 12, 6071.	5.8	44
203	T Cell–Mediated Elimination of B7.2 Transgenic B Cells. Immunity, 1997, 6, 327-339.	6.6	43
204	Nodal immune flare mimics nodal disease progression following neoadjuvant immune checkpoint inhibitors in non-small cell lung cancer. Nature Communications, 2021, 12, 5045.	5.8	42
205	Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2006, 24, 442-447.	0.8	40
206	Friends Not Foes: CTLA-4 Blockade and mTOR Inhibition Cooperate during CD8+ T Cell Priming To Promote Memory Formation and Metabolic Readiness. Journal of Immunology, 2015, 194, 2089-2098.	0.4	39
207	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	1.8	39
208	Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Relapsed/Refractory Acute Myeloid Leukemia: A Non-Randomized, Prospective, Phase 2 Study. Blood, 2019, 134, 830-830.	0.6	38
209	Characterization and Comparison of GITR Expression in Solid Tumors. Clinical Cancer Research, 2019, 25, 6501-6510.	3.2	37
210	[55] HLA antigens in serum. Methods in Enzymology, 1984, 108, 614-624.	0.4	36
211	Optimization and validation of a robust human T-cell culture method for monitoring phenotypic and polyfunctional antigen-specific CD4 and CD8 T-cell responses. Cytotherapy, 2009, 11, 912-922.	0.3	35
212	Gene Therapy-Mediated Reprogramming Tumor Infiltrating T Cells Using IL-2 and Inhibiting NF-κB Signaling Improves the Efficacy of Immunotherapy in a Brain Cancer Model. Neurotherapeutics, 2012, 9, 827-843.	2.1	33
213	CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncolmmunology, 2012, 1, 544-546.	2.1	32
214	Ablation of B7-H3 but Not B7-H4 Results in Highly Increased Tumor Burden in a Murine Model of Spontaneous Prostate Cancer. Cancer Immunology Research, 2015, 3, 849-854.	1.6	32
215	Ipilimumab plus Lenalidomide after Allogeneic and Autologous Stem Cell Transplantation for Patients with Lymphoid Malignancies. Clinical Cancer Research, 2018, 24, 1011-1018.	3.2	31
216	Blockade of CTLA-4 and PD-1 Enhances Adoptive T-cell Therapy Efficacy in an ICOS-Mediated Manner. Cancer Immunology Research, 2019, 7, 1803-1812.	1.6	31

#	Article	IF	CITATIONS
217	H–2 Antigens on a murine lymphoma are associated with additional proteins. Nature, 1978, 271, 165-167.	13.7	30
218	Vaccination with tumor cells expressing IL-15 and IL-15Rα inhibits murine breast and prostate cancer. Gene Therapy, 2014, 21, 393-401.	2.3	30
219	Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-na \tilde{A}^- ve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. , 2021, 9, e002919.		30
220	Biosynthesis and processing of murine T-cell antigen receptor. Cell, 1984, 38, 659-665.	13.5	29
221	Antibodies against the T cell receptor/CD3 complex interfere with distinct intra-thymic cell-cell interactionsin vivo: correlation with arrest of T cell differentiation. European Journal of Immunology, 1989, 19, 857-863.	1.6	29
222	Immunotherapeutic Strategies for High-Risk Bladder Cancer. Seminars in Oncology, 2007, 34, 165-172.	0.8	29
223	B7x in the Periphery Abrogates Pancreas-Specific Damage Mediated by Self-reactive CD8 T Cells. Journal of Immunology, 2012, 189, 4165-4174.	0.4	29
224	De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunology Research, 2016, 4, 279-288.	1.6	29
225	A phase 1-2 trial of sitravatinib and nivolumab in clear cell renal cell carcinoma following progression on antiangiogenic therapy. Science Translational Medicine, 2022, 14, eabm6420.	5.8	29
226	A Phase II Trial of Nivolumab Combined with Ibrutinib for Patients with Richter Transformation. Blood, 2018, 132, 296-296.	0.6	27
227	The Murine T Cell Antigen Receptor and Associated Structures. Immunological Reviews, 1984, 81, 145-160.	2.8	26
228	Cell surface expression by adult rat hepatocytes of a non-collagen glycoprotein present in rat liver biomatrix. Experimental Cell Research, 1984, 152, 402-414.	1.2	25
229	Functional deficiencies of granulocyte-macrophage colony stimulating factor and interleukin-3 contribute to insulitis and destruction of Î ² cells. Blood, 2007, 110, 954-961.	0.6	25
230	The role of tyrosine phosphorylation and PTP-1C in CTLA-4 signal transduction. European Journal of Immunology, 1996, 26, 3224-3229.	1.6	24
231	The gamma T-cell antigen receptor. Journal of Clinical Immunology, 1987, 7, 429-440.	2.0	23
232	Emerging mechanisms of immune regulation: the extended B7 family and regulatory T cells. Arthritis Research, 2004, 6, 208.	2.0	23
233	Checkpoints. Cell, 2015, 162, 1202-1205.	13.5	23
234	Phenotypic and functional analysis of positive selection in the gamma/delta T cell lineage Journal of Experimental Medicine, 1993, 177, 1061-1070.	4.2	21

#	Article	IF	CITATIONS
235	Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9872-9877.	3.3	21
236	First-in-Human Phase I Study of ABBV-085, an Antibody–Drug Conjugate Targeting LRRC15, in Sarcomas and Other Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 3556-3566.	3.2	21
237	Results of a Phase 2, Open-Label Study of Idarubicin (I), Cytarabine (A) and Nivolumab (Nivo) in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) and High-Risk Myelodysplastic Syndrome (MDS). Blood, 2018, 132, 905-905.	0.6	21
238	Chemical and immunological characterization of developmentally expressed chicken erythroid surface membrane antigens. Developmental Biology, 1982, 91, 389-396.	0.9	20
239	Expression of a fetal γδT-cell receptor in adult mice triggers a non-MHC-linked form of selective depletion. International Immunology, 1991, 3, 385-393.	1.8	20
240	To be or not to be B7. Journal of Clinical Investigation, 2006, 116, 2590-2593.	3.9	20
241	Co-stimulation via CD28 induces activation of a refractory subset of MRL-Ipr/Ipr T lymphocytes. International Immunology, 1993, 5, 1451-1460.	1.8	15
242	Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nature Communications, 2020, 11, 1839.	5.8	15
243	The substrate specificity of L-asparaginase fromAlcaligenes eutrophus. FEBS Letters, 1971, 14, 107-108.	1.3	14
244	Cytotoxic T Lymphocyte Antigen 4 (CD152) Regulates Self-Reactive T cells in BALB/c but not in the Autoimmune NOD Mouse. Journal of Autoimmunity, 2000, 14, 123-131.	3.0	14
245	Safety, Efficacy, and Biomarkers of Response to Azacitidine (AZA) with Nivolumab (Nivo) and AZA with Nivo and Ipilimumab (Ipi) in Relapsed/Refractory Acute Myeloid Leukemia: A Non-Randomized, Phase 2 Study. Blood, 2018, 132, 906-906.	0.6	13
246	A genetic library screen for signaling proteins that interact with phosphorylated T cell costimulatory receptors. Genomics, 2006, 88, 841-845.	1.3	12
247	Prostate Cancer. BioDrugs, 2003, 17, 131-138.	2.2	11
248	The lymphoproliferative defect in CTLA-4–deficient mice is ameliorated by an inhibitory NK cell receptor. Blood, 2002, 99, 4509-4516.	0.6	10
249	Inhibitors of B7–CD28 costimulation in urologic malignancies. Immunotherapy, 2009, 1, 129-139.	1.0	10
250	Response to "lpilimumab (Yervoy) and the TGN1412 catastrophe― Immunobiology, 2012, 217, 590-592.	0.8	10
251	Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Relapsed/Refractory (R/R) Acute Myeloid Leukemia: Clinical and Immune Biomarkers of Response. Blood, 2020, 136, 43-45.	0.6	10
252	Diminished Expression of the T Cell Receptor on the Expanded Lymphocyte Population in Mrl/Mp-1pr/1prMice. Autoimmunity, 1989, 2, 97-111.	1.2	9

#	Article	IF	CITATIONS
253	MHC class II-independent and -dependent T cell expansion and B cell hyperactivity in vivo in mice deficient in CD152 (CTLA-4). International Immunology, 2004, 16, 895-904.	1.8	9
254	Donor and host B7-H4 expression negatively regulates acute graft-versus-host disease lethality. JCI Insight, 2019, 4, .	2.3	8
255	Î ³ δ Antigen receptors of Thy-1 + dendritic epidermal cells: Implications for thymic differentiation. Immunologic Research, 1988, 7, 292-302.	1.3	7
256	Characterization ofenv gene recombination in X-ray-induced thymomas of C57BL76 mice. Molecular Carcinogenesis, 1989, 2, 126-130.	1.3	6
257	Nucleotide and deduced amino acid sequence of a murine cDNA clone encoding one member of the hsp65 multigene family. Nucleic Acids Research, 1990, 18, 7153-7153.	6.5	6
258	Cutting Edge: Chronic Inflammatory Liver Disease in Mice Expressing a CD28-Specific Ligand. Journal of Immunology, 2013, 190, 526-530.	0.4	6
259	Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer. PLoS ONE, 2012, 7, e35222.	1.1	5
260	Concurrent OX40 and CD30 Ligand Blockade Abrogates the CD4-Driven Autoimmunity Associated with CTLA4 and PD1 Blockade while Preserving Excellent Anti-CD8 Tumor Immunity. Journal of Immunology, 2017, 199, 974-981.	0.4	5
261	Nobels: Toll pioneers deserve recognition. Nature, 2011, 479, 178-178.	13.7	4
262	Response to Comment on "Expression of Helios in Peripherally Induced Foxp3+ Regulatory T Cells― Journal of Immunology, 2012, 189, 500.2-501.	0.4	3
263	Training Procedures and Task Difficulty in Brightness and Position Discriminations by Rats. Psychological Reports, 1972, 31, 71-76.	0.9	2
264	Expression of Ly-1 and Ly-2 on a spontaneous AKR B-cell lymphoma. Immunogenetics, 1983, 17, 655-659.	1.2	2
265	Lymphocyte activation and effector functions How signals are integrated in the immune system. Current Opinion in Immunology, 1997, 9, 293-295.	2.4	2
266	Checkpoint Blockade + Chemotherapy: the Right Combination for AML?. Blood Cancer Discovery, 2021, 2, 551-554.	2.6	2
267	Immune Co-signaling to Treat Cancer. , 2013, , 211-280.		1
268	Durable Responses with Ipilimumab Plus Lenalidomide after Allogeneic and Autologous Stem Cell Transplantation for Patients with Lymphoid Malignancies. Blood, 2018, 132, 4585-4585.	0.6	1
269	Structural Differences in Envelope Glycoproteins Associated with Rat Leukaemia Virus Produced by Novikoff Hepatocellular Carcinoma and Spontaneously Transformed Wistar Rat Embryo Cells. Journal of General Virology, 1984, 65, 743-760.	1.3	0
270	The congenic mutant B6.C-H-2bmâ ``1 (H-2bmâ ``1) serological response to the T-cell receptor on EL4. Cellular Immunology, 1986, 101, 586-592.	1.4	0

#	Article	IF	CITATIONS
271	Lloyd J. Old (1933–2011). Science, 2012, 335, 49-49.	6.0	0
272	Fc Gamma R. , 2017, , 209-228.		0
273	Protein Localization in Negative Signaling. , 2003, , 355-359.		0
274	Checkpoint Blockade and Combinatorial Immunotherapies. , 2007, , 363-390.		0
275	Single-Cell Characterization of Acute Myeloid Leukemia (AML) and Its Microenvironment Identifies Signatures of Resistance to PD-1 Blockade Based Therapy. Blood, 2020, 136, 29-31.	0.6	0