
Daniel F Doak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907017/publications.pdf Version: 2024-02-01

DANIEL E DOAK

#	Article	IF	CITATIONS
1	Demographic consequences of mutualism disruption: Browsing and bigâ€headed ant invasion drive acacia population declines. Ecology, 2022, 103, e3655.	1.5	6
2	Genetically based demographic reconstructions require careful consideration of generation time. Current Biology, 2022, 32, R356-R357.	1.8	6
3	Climate manipulations differentially affect plant population dynamics within versus beyond northern range limits. Journal of Ecology, 2021, 109, 664-675.	1.9	18
4	Dynamic shifts in social network structure and composition within a breeding hybrid population. Journal of Animal Ecology, 2021, 90, 197-211.	1.3	3
5	Latitudinal gradients in population growth do not reflect demographic responses to climate. Ecological Applications, 2021, 31, e2242.	1.8	10
6	Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. Ecology Letters, 2021, 24, 772-780.	3.0	9
7	A critical comparison of integral projection and matrix projection models for demographic analysis. Ecological Monographs, 2021, 91, e01447.	2.4	21
8	Testing Demographic Methods Using Field Studies of Five Dissimilar Species. Bulletin of the Ecological Society of America, 2021, 102, e01870.	0.2	0
9	Resource availability and heterogeneity shape the selfâ€organisation of regular spatial patterning. Ecology Letters, 2021, 24, 1880-1891.	3.0	5
10	Understanding extinction risk and resilience in an extremely small population facing climate and ecosystem change. Ecosphere, 2021, 12, e03724.	1.0	3
11	Climate warming threatens the persistence of a community of disturbanceâ€∎dapted native annual plants. Ecology, 2021, 102, e03464.	1.5	12
12	Spatial patterning of soil microbial communities created by fungusâ€farming termites. Molecular Ecology, 2020, 29, 4487-4501.	2.0	15
13	Breeding transients in capture–recapture modeling and their consequences for local population dynamics. Scientific Reports, 2020, 10, 15815.	1.6	6
14	Translocation with targeted vaccination is the most effective strategy to protect an island endemic bird threatened by West Nile virus. Diversity and Distributions, 2020, 26, 1104-1115.	1.9	5
15	Alternatives to genetic affinity as a context for within-species response to climate. Nature Climate Change, 2019, 9, 787-794.	8.1	37
16	Marine protected areas enhance structural complexity but do not buffer the consequences of ocean warming for an overexploited precious coral. Journal of Applied Ecology, 2019, 56, 1063-1074.	1.9	20
17	Asynchrony in individual and subpopulation fecundity stabilizes reproductive output of an alpine plant population. Ecology, 2019, 100, e02639.	1.5	7
18	Large mammals generate both top-down effects and extended trophic cascades on floral-visitor assemblages. Journal of Tropical Ecology, 2019, 35, 185-198.	0.5	4

DANIEL F DOAK

#	Article	IF	CITATIONS
19	Improving structured population models with more realistic representations of nonâ€normal growth. Methods in Ecology and Evolution, 2019, 10, 1431-1444.	2.2	4
20	Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecological Monographs, 2019, 89, e01360.	2.4	16
21	Assessing Behavioral Associations in a Hybrid Zone through Social Network Analysis: Complex Assortative Behaviors Structure Associations in a Hybrid Quail Population. American Naturalist, 2019, 193, 852-865.	1.0	10
22	Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biology, 2019, 25, 775-793.	4.2	169
23	Strong linkages between depth, longevity and demographic stability across marine sessile species. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172688.	1.2	26
24	Aridity weakens population-level effects of multiple species interactions on <i>Hibiscus meyeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 543-548.	3.3	28
25	Accounting for Lifeâ€History Strategies and Timescales in Marine Restoration. Conservation Letters, 2018, 11, e12341.	2.8	45
26	The albatross of assessing and managing risk for long-lived pelagic seabirds. Biological Conservation, 2018, 217, 83-95.	1.9	18
27	Both lifeâ€history plasticity and local adaptation will shape rangeâ€wide responses to climate warming in the tundra plant <i>Silene acaulis</i> . Global Change Biology, 2018, 24, 1614-1625.	4.2	57
28	Climate and synchrony with conspecifics determine the effects of flowering phenology on reproductive success in <i>Silene acaulis</i> . Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	10
29	Ecological Function Analysis: Incorporating Species Roles into Conservation. Trends in Ecology and Evolution, 2018, 33, 840-850.	4.2	50
30	Measurement error of state variables creates substantial bias in results of demographic population models. Ecology, 2018, 99, 2308-2317.	1.5	2
31	Portfolio effects, climate change, and the persistence of small populations: analyses on the rare plant <i>Saussurea weberi</i> . Ecology, 2017, 98, 1071-1081.	1.5	29
32	Varying demographic impacts of different fisheries on three Mediterranean seabird species. Global Change Biology, 2017, 23, 3012-3029.	4.2	27
33	Wind and rain are the primary climate factors driving changing phenology of an aerial insectivore. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170412.	1.2	17
34	Discrepancies in occupancy and abundance approaches to identifying and protecting habitat for an atâ€risk species. Ecology and Evolution, 2017, 7, 5692-5702.	0.8	23
35	A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 2017, 26, 115-127.	2.7	152
36	Characterizing Species Interactions to Understand Press Perturbations: What Is the Community Matrix?. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 409-432.	3.8	89

DANIEL F DOAK

#	Article	IF	CITATIONS
37	Demographic compensation among populations: what is it, how does it arise and what are its implications?. Ecology Letters, 2015, 18, 1139-1152.	3.0	96
38	Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects. PLoS ONE, 2015, 10, e0131082.	1.1	28
39	Recommendations for Improving Recovery Criteria under the US Endangered Species Act. BioScience, 2015, 65, 189-199.	2.2	47
40	Where and When do Species Interactions Set Range Limits?. Trends in Ecology and Evolution, 2015, 30, 780-792.	4.2	347
41	Long-term response of plant communities to herbivore exclusion at high elevation grasslands. Biodiversity and Conservation, 2015, 24, 3033-3047.	1.2	18
42	Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations?. Global Ecology and Biogeography, 2015, 24, 611-620.	2.7	107
43	Van Manen <i>et al</i> ., <i>Doth Protest too Much: New Analyses of the Yellowstone Grizzly Population Confirm the Need to Reevaluate Past Population Trends</i> . Conservation Letters, 2014, 7, 332-333.	2.8	0
44	Lichenometric dating of little ice age glacier moraines using explicit demographic models of lichen colonization, growth, and survival. Geografiska Annaler, Series A: Physical Geography, 2014, 96, 21-41.	0.6	22
45	What is the future of conservation?. Trends in Ecology and Evolution, 2014, 29, 77-81.	4.2	154
46	Moving forward with effective goals and methods for conservation: a reply to Marvier and Kareiva. Trends in Ecology and Evolution, 2014, 29, 132-133.	4.2	6
47	Reâ€Evaluating Evidence for Past Population Trends and Predicted Dynamics of Yellowstone Grizzly Bears. Conservation Letters, 2014, 7, 312-322.	2.8	13
48	Using Population Viability Criteria to Assess Strategies to Minimize Disease Threats for an Endangered Carnivore. Conservation Biology, 2013, 27, 303-314.	2.4	35
49	Climatic stress mediates the impacts of herbivory on plant population structure and components of individual fitness. Journal of Ecology, 2013, 101, 1074-1083.	1.9	25
50	Comparative demography of an epiphytic lichen: support for general life history patterns and solutions to common problems in demographic parameter estimation. Oecologia, 2012, 170, 137-146.	0.9	18
51	Matrix population models from 20 studies of perennial plant populations. Ecology, 2012, 93, 951-951.	1.5	12
52	Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree. Ecology, 2011, 92, 1626-1636.	1.5	54
53	Sampling errors create bias in Markov models for community dynamics: the problem and a method for its solution. Oecologia, 2011, 167, 199-207.	0.9	5
54	Could residual oil from the <i>Exxon Valdez</i> spill create a long-term population "sink―for sea otters in Alaska?. , 2011, 21, 2917-2932.		43

DANIEL F DOAK

#	Article	IF	CITATIONS
55	Predicting population consequences of ocean climate change for an ecosystem sentinel, the seabird Cassin's auklet. Global Change Biology, 2010, 16, 1923-1935.	4.2	58
56	Demographic compensation and tipping points in climate-induced range shifts. Nature, 2010, 467, 959-962.	13.7	381
57	Termites create spatial structure and govern ecosystem function by affecting N ₂ fixation in an East African savanna. Ecology, 2010, 91, 1296-1307.	1.5	95
58	Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17234-17239.	3.3	207
59	Spatial Pattern Enhances Ecosystem Functioning in an African Savanna. PLoS Biology, 2010, 8, e1000377.	2.6	198
60	Incorporating ecological drivers and uncertainty into a demographic population viability analysis for the island fox. Ecological Monographs, 2009, 79, 77-108.	2.4	65
61	Population viability management: ecological standards to guide adaptive management for rare species. Frontiers in Ecology and the Environment, 2009, 7, 158-165.	1.9	57
62	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY. Ecology, 2008, 89, 19-25.	1.5	386
63	UNDERSTANDING AND PREDICTING ECOLOGICAL DYNAMICS: ARE MAJOR SURPRISES INEVITABLE. Ecology, 2008, 89, 952-961.	1.5	222
64	LIFE HISTORY AND VIABILITY OF A LONG-LIVED MARINE INVERTEBRATE: THE OCTOCORALPARAMURICEA CLAVATA. Ecology, 2007, 88, 918-928.	1.5	122
65	Modeling vital rates improves estimation of population projection matrices. Population Ecology, 2006, 48, 79-89.	0.7	19
66	KILLER APPETITES: ASSESSING THE ROLE OF PREDATORS IN ECOLOGICAL COMMUNITIES. Ecology, 2004, 85, 3373-3384.	1.5	226
67	Life history of the longâ€lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from sizeâ€based population projection matrices. American Journal of Botany, 1998, 85, 784-793.	0.8	124
68	Empirical test of increasing genetic variation via interâ€population crossing for native plant restoration in variable environments. Restoration Ecology, 0, , .	1.4	1