John C Gensel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906895/publications.pdf

Version: 2024-02-01

110317 147726 6,287 66 31 64 citations h-index g-index papers 71 71 71 8315 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reflections on Data Sharing Practices in Spinal Cord Injury Research. Neuroinformatics, 2022, 20, 3-6.	1.5	3
2	Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 2022, 20, 203-219.	1.5	10
3	Inhibition of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade and Promotes Recovery after Spinal Cord Injury. International Journal of Molecular Sciences, 2022, 23, 355.	1.8	8
4	Macrophage-Engineered Vesicles for Therapeutic Delivery and Bidirectional Reprogramming of Immune Cell Polarization. ACS Omega, 2021, 6, 3847-3857.	1.6	21
5	Continued development of azithromycin as a neuroprotective therapeutic for the treatment of spinal cord injury and other neurological conditions. Neural Regeneration Research, 2021, 16, 508.	1.6	2
6	Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Frontiers in Immunology, 2021, 12, 574425.	2.2	38
7	Mitochondria exert age-divergent effects on recovery from spinal cord injury. Experimental Neurology, 2021, 337, 113597.	2.0	13
8	The effects of myelin on macrophage activation are phenotypic specific via cPLA2 in the context of spinal cord injury inflammation. Scientific Reports, 2021, 11, 6341.	1.6	16
9	Hemoglobin induces oxidative stress and mitochondrial dysfunction in oligodendrocyte progenitor cells. Translational Research, 2021, 231, 13-23.	2.2	18
10	Acute inflammatory profiles differ with sex and age after spinal cord injury. Journal of Neuroinflammation, 2021, 18, 113.	3.1	38
11	Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Frontiers in Immunology, 2021, 12, 628156.	2.2	6
12	Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Frontiers in Neurology, 2020, 11, 802.	1.1	45
13	Liposomal delivery of azithromycin enhances its immunotherapeutic efficacy and reduces toxicity in myocardial infarction. Scientific Reports, 2020, 10, 16596.	1.6	10
14	Effect of Sex on Motor Function, Lesion Size, and Neuropathic Pain after Contusion Spinal Cord Injury in Mice. Journal of Neurotrauma, 2020, 37, 1983-1990.	1.7	28
15	Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Experimental Neurology, 2020, 329, 113310.	2.0	173
16	Arginase 1 Insufficiency Precipitates Amyloid- \hat{l}^2 Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Frontiers in Immunology, 2020, 11, 582998.	2.2	15
17	Acute brain inflammation, white matter oxidative stress, and myelin deficiency in a model of neonatal intraventricular hemorrhage. Journal of Neurosurgery: Pediatrics, 2020, 26, 613-623.	0.8	19
18	Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. Journal of Neurosurgery: Pediatrics, 2020, 25, 476-483.	0.8	14

#	Article	IF	Citations
19	Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Experimental Neurology, 2019, 320, 112971.	2.0	26
20	Macrolide derivatives reduce proinflammatory macrophage activation and macrophageâ€mediated neurotoxicity. CNS Neuroscience and Therapeutics, 2019, 25, 591-600.	1.9	30
21	Delayed Azithromycin Treatment Improves Recovery After Mouse Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2019, 13, 490.	1.8	17
22	Reducing age-dependent monocyte-derived macrophage activation contributes to the therapeutic efficacy of NADPH oxidase inhibition in spinal cord injury. Brain, Behavior, and Immunity, 2019, 76, 139-150.	2.0	28
23	Sexual Dimorphism of Pain Control: Analgesic Effects of Pioglitazone and Azithromycin in Chronic Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 2372-2376.	1.7	30
24	Therapeutic implications of advanced age at time of spinal cord injury. Neural Regeneration Research, 2019, 14, 1895.	1.6	7
25	Cervical Hemicontusion Spinal Cord Injury Model. Springer Series in Translational Stroke Research, 2019, , 431-451.	0.1	0
26	Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics, 2018, 15, 541-553.	2.1	363
27	Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. Journal of Neuroscience Research, 2018, 96, 969-977.	1.3	80
28	Leukemia inhibitory factor modulates the peripheral immune response in a rat model of emergent large vessel occlusion. Journal of Neuroinflammation, 2018, 15, 288.	3.1	23
29	Azithromycin therapy reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction: Potential therapeutic targets in ischemic heart disease. PLoS ONE, 2018, 13, e0200474.	1.1	39
30	Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Scientific Reports, 2017, 7, 40144.	1.6	115
31	Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Experimental Neurology, 2017, 293, 74-82.	2.0	30
32	Compression Decreases Anatomical and Functional Recovery and Alters Inflammation after Contusive Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 2342-2352.	1.7	25
33	Cardiac Chemical Exchange Saturation Transfer MR Imaging Tracking of Cell Survival or Rejection in Mouse Models of Cell Therapy. Radiology, 2017, 282, 131-138.	3.6	14
34	Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs. ENeuro, 2017, 4, ENEURO.0246-17.2017.	0.9	27
35	Interactions of primary insult biomechanics and secondary cascades in spinal cord injury: implications for therapy. Neural Regeneration Research, 2017, 12, 1618.	1.6	19
36	Macrophages are necessary for epimorphic regeneration in African spiny mice. ELife, 2017, 6, .	2.8	147

#	Article	IF	Citations
37	CNS Plasticity in Injury and Disease. Neural Plasticity, 2016, 2016, 1-2.	1.0	О
38	Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiology of Aging, 2016, 47, 157-167.	1.5	70
39	Identification of Novel Tau Interactions withÂEndoplasmic Reticulum Proteins inÂAlzheimer's Disease Brain. Journal of Alzheimer's Disease, 2015, 48, 687-702.	1.2	49
40	Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. Journal of Neuroinflammation, 2015, 12, 218.	3.1	76
41	Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 2015, 1619, 1-11.	1.1	562
42	Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages. Journal of Neuroscience, 2015, 35, 9966-9976.	1.7	73
43	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	2.0	75
44	Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain, Behavior, and Immunity, 2015, 49, 246-254.	2.0	7
45	Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Experimental Neurology, 2015, 273, 83-91.	2.0	92
46	Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature Communications, 2015, 6, 8581.	5.8	153
47	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	1.7	100
48	IL-4 Signaling Drives a Unique Arginase+/IL-1Â+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4RÂ after Traumatic Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 8904-8917.	1.7	172
49	Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Experimental Neurology, 2014, 258, 112-120.	2.0	71
50	Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biological Psychiatry, 2014, 76, 575-584.	0.7	209
51	Derivation of Multivariate Syndromic Outcome Metrics for Consistent Testing across Multiple Models of Cervical Spinal Cord Injury in Rats. PLoS ONE, 2013, 8, e59712.	1.1	65
52	Topiramate Treatment Is Neuroprotective and Reduces Oligodendrocyte Loss after Cervical Spinal Cord Injury. PLoS ONE, 2012, 7, e33519.	1.1	21
53	Controversies on the role of inflammationin the injured spinal cord., 2012,, 272-279.		2
54	Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell and Tissue Research, 2012, 349, 201-213.	1.5	42

#	Article	IF	CITATIONS
55	Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Experimental Neurology, 2012, 233, 615-622.	2.0	58
56	Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opinion on Therapeutic Targets, 2011, 15, 505-518.	1.5	72
57	Transforming Growth Factor α Transforms Astrocytes to a Growth-Supportive Phenotype after Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 15173-15187.	1.7	58
58	Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia. Journal of Neuroscience Methods, 2010, 190, 71-79.	1.3	69
59	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Spinal Surgery, 2010, 24, 92-94.	0.0	O
60	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Journal of Neuroscience, 2009, 29, 3956-3968.	1.7	191
61	An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. Journal of Neuroscience Methods, 2009, 181, 36-44.	1.3	116
62	Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. Journal of Neuroscience, 2009, 29, 13435-13444.	1.7	1,831
63	Cell Death after Spinal Cord Injury Is Exacerbated by Rapid TNFα-Induced Trafficking of GluR2-Lacking AMPARs to the Plasma Membrane. Journal of Neuroscience, 2008, 28, 11391-11400.	1.7	205
64	Does Chronic Remyelination Occur for All Spared Axons after Spinal Cord Injury in Mouse?. Journal of Neuroscience, 2008, 28, 8385-8386.	1.7	4
65	Behavioral and Histological Characterization of Unilateral Cervical Spinal Cord Contusion Injury in Rats. Journal of Neurotrauma, 2006, 23, 36-54.	1.7	215
66	Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Experimental Neurology, 2004, 190, 289-310.	2.0	125