Juan Gambini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906485/publications.pdf

Version: 2024-02-01

147801 155660 3,147 60 31 55 h-index citations g-index papers 65 65 65 5311 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Transcriptomic profile of epileptic children treated with ketogenic therapies. Journal of Integrative Neuroscience, 2022, 21, 031.	1.7	4
2	Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches. Biomedicines, 2022, 10, 753.	3.2	5
3	Moderate Red Wine Consumption Increases the Expression of Longevity-Associated Genes in Controlled Human Populations and Extends Lifespan in Drosophila melanogaster. Antioxidants, 2021, 10, 301.	5.1	13
4	Anti-Inflammatory Properties of Diet: Role in Healthy Aging. Biomedicines, 2021, 9, 922.	3.2	34
5	Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines, 2021, 9, 1074.	3.2	29
6	Estrogen Replacement Therapy Induces Antioxidant and Longevity-Related Genes in Women after Medically Induced Menopause. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-9.	4.0	15
7	Lifelong soya consumption in males does not increase lifespan but increases health span under a metabolic stress such as type 2 diabetes mellitus. Mechanisms of Ageing and Development, 2021, 200, 111596.	4.6	3
8	Protective Effects of Polyphenols Present in Mediterranean Diet on Endothelial Dysfunction. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	22
9	Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines, 2020, 8, 287.	3.2	22
10	BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. International Journal of Molecular Sciences, 2020, 21, 418.	4.1	26
11	The Relationship between Diet and Frailty in Aging. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 1373-1382.	1.2	15
12	Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomedicine and Pharmacotherapy, 2019, 118, 109130.	5.6	21
13	Relation Between Genetic Factors and Frailty in Older Adults. Journal of the American Medical Directors Association, 2019, 20, 1451-1457.	2.5	13
14	Sex Differences in Age-Associated Type 2 Diabetes in Ratsâ€"Role of Estrogens and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	50
15	Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. International Journal of Molecular Sciences, 2019, 20, 1195.	4.1	138
16	Hydrogen Peroxide Diffusion through Enamel and Dentin. Materials, 2018, 11, 1694.	2.9	16
17	Resveratrol in Experimental Models and Humans. , 2018, , 1143-1156.		O
18	Brain-Derived Neurotrophic Factor as a Marker of Cognitive Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw145.	3.6	3

#	Article	IF	CITATIONS
19	A Stress-Resistant Lipidomic Signature Confers Extreme Longevity to Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 30-37.	3.6	59
20	Role of p16INK4a and BMI-1 in oxidative stress-induced premature senescence in human dental pulp stem cells. Redox Biology, 2017, 12, 690-698.	9.0	39
21	Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. Mechanisms of Ageing and Development, 2017, 168, 54-57.	4.6	31
22	Influence of Partial Oâ,, Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on β-Tricalcium Phosphate Scaffold. International Journal of Oral and Maxillofacial Implants, 2017, 32, 1251-1256.	1.4	12
23	Human exceptional longevity: transcriptome from centenarians is distinct from septuagenarians and reveals a role of Bcl-xL in successful aging. Aging, 2016, 8, 3185-3208.	3.1	39
24	Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2016, 21, e374-e379.	1.7	3
25	Role of NAD+/NADH redox ratio in cell metabolism. Archives of Biochemistry and Biophysics, 2016, 595, 176-180.	3.0	9
26	PETra: software tool for a semiautomatic positron emission tomography image analysis and its application to the study of brain glucose consumption in rats. IEEE Latin America Transactions, 2015, 13, 876-884.	1.6	0
27	PTEN Mediates the Antioxidant Effect of Resveratrol at Nutritionally Relevant Concentrations. BioMed Research International, 2014, 2014, 1-6.	1.9	40
28	Activation of p38, p21, and NRF-2 Mediates Decreased Proliferation of Human Dental Pulp Stem Cells Cultured under 21% O2. Stem Cell Reports, 2014, 3, 566-573.	4.8	29
29	Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology, 2014, 45, 154-166.	2.7	53
30	Oxidative Stress Is Related to Frailty, Not to Age or Sex, in a Geriatric Population: Lipid and Protein Oxidation as Biomarkers of Frailty. Journal of the American Geriatrics Society, 2014, 62, 1324-1328.	2.6	123
31	Early, But Not Late Onset Estrogen Replacement Therapy Prevents Oxidative Stress and Metabolic Alterations Caused by Ovariectomy. Antioxidants and Redox Signaling, 2014, 20, 236-246.	5.4	55
32	Pharmacological Properties of Physical Exercise in The Elderly. Current Pharmaceutical Design, 2014, 20, 3019-3029.	1.9	33
33	Application of mesenchymal stem cells in bone regenerative procedures in oral implantology. A literature review. Journal of Clinical and Experimental Dentistry, 2014, 6, e60-5.	1.2	10
34	Role of angiotensin II in arterial pressure and renal hemodynamics in rats with altered renal development: age- and sex-dependent differences. American Journal of Physiology - Renal Physiology, 2013, 304, F33-F40.	2.7	17
35	Role of oestrogens on oxidative stress and inflammation in ageing. Hormone Molecular Biology and Clinical Investigation, 2013, 16, 65-72.	0.7	23
36	Potential role of physiotherapists in polymedication of the elderly. Geriatrics and Gerontology International, 2013, 13, 1086-1087.	1.5	1

#	Article	IF	CITATIONS
37	Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Scientific Reports, 2012, 2, 961.	3.3	84
38	Mitochondria as sources and targets of damage in cellular aging. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1287-95.	2.3	65
39	Circadian System Functionality, Hippocampal Oxidative Stress, and Spatial Memory in the APPswe/PS1dE9 Transgenic Model of Alzheimer Disease: Effects of Melatonin or Ramelteon. Chronobiology International, 2012, 29, 822-834.	2.0	44
40	Age-dependent changes in the transcription profile of long-lived Drosophila over-expressing glutamate cysteine ligase. Mechanisms of Ageing and Development, 2012, 133, 401-413.	4.6	16
41	Free [NADH]/[NAD+] regulates sirtuin expression. Archives of Biochemistry and Biophysics, 2011, 512, 24-29.	3.0	43
42	Cholesterol and Amyloid- \hat{l}^2 : Evidence for a Cross-Talk between Astrocytes and Neuronal Cells. Journal of Alzheimer's Disease, 2011, 25, 645-653.	2.6	35
43	Females Live Longer than Males: Role of Oxidative Stress. Current Pharmaceutical Design, 2011, 17, 3959-3965.	1.9	127
44	RasGrf1 deficiency delays aging in mice. Aging, 2011, 3, 262-276.	3.1	59
45	Estradiol or genistein prevent Alzheimer's disease-associated inflammation correlating with an increase PPARÎ ³ expression in cultured astrocytes. Brain Research, 2010, 1312, 138-144.	2.2	165
46	An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radical Research, 2010, 44, 1203-1215.	3.3	56
47	Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 205-211.	3.8	173
48	1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Archives of Biochemistry and Biophysics, 2010, 496, 93-100.	3.0	119
49	Estrogenic Modulation of Longevity by Induction of Antioxidant Enzymes. , 2010, , 119-128.		0
50	Low in vivo brain glucose consumption and high oxidative stress in accelerated aging. FEBS Letters, 2009, 583, 2287-2293.	2.8	16
51	Bemiparin improves the total antioxidant status in plasma. European Journal of Pharmacology, 2009, 602, 380-382.	3.5	4
52	Oestradiol or genistein rescues neurons from amyloid betaâ€induced cell death by inhibiting activation of p38. Aging Cell, 2008, 7, 112-118.	6.7	75
53	Modulation of longevity-associated genes by estrogens or phytoestrogens. Biological Chemistry, 2008, 389, 273-277.	2.5	48
54	Mitochondrial oxidant generation is involved in determining why females live longer than males. Frontiers in Bioscience - Landmark, 2007, 12, 1008.	3.0	86

#	Article	IF	CITATIONS
55	Role of mitochondrial oxidative stress to explain the different longevity between genders. Protective effect of estrogens. Free Radical Research, 2006, 40, 1359-1365.	3.3	118
56	Genistein, a soy isoflavone, upâ€regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFκB. FASEB Journal, 2006, 20, 2136-2138.	0.5	153
57	17β-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFκB cascade. Aging Cell, 2005, 4, 113-118.	6.7	240
58	Why females live longer than males? Importance of the upregulation of longevityâ€associated genes by oestrogenic compounds. FEBS Letters, 2005, 579, 2541-2545.	2.8	208
59	Why Females Live Longer Than Males: Control of Longevity by Sex Hormones. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, pe17.	0.8	100
60	Tumor Cytotoxicity by Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 13888-13897.	3.4	44