Dirk Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906396/publications.pdf

Version: 2024-02-01

109321 133252 7,685 62 35 59 citations h-index g-index papers 67 67 67 15254 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress. Blood, 2022, 139, 1184-1197.	1.4	7
2	DJâ€1 depletion prevents immunoaging in Tâ€cell compartments. EMBO Reports, 2022, 23, e53302.	4.5	9
3	Unspecific CTL Killing Is Enhanced by High Glucose via TNF-Related Apoptosis-Inducing Ligand. Frontiers in Immunology, 2022, 13, 831680.	4.8	O
4	Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nature Communications, 2022, 13, 1789.	12.8	18
5	A FAsT contribution: Adipocytes rewire their metabolism to acquire immune functions. Cell Metabolism, 2022, 34, 656-657.	16.2	O
6	Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nature Communications, 2022, 13, 2699.	12.8	20
7	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nature Metabolism, 2022, 4, 589-607.	11.9	18
8	Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages. Nature Metabolism, 2022, 4, 524-533.	11.9	32
9	Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen <i>Citrobacter rodentium</i> . Gut Microbes, 2021, 13, 1966263.	9.8	35
10	The emerging role of one-carbon metabolism in T cells. Current Opinion in Biotechnology, 2021, 68, 193-201.	6.6	14
11	Editorial overview: Intrinsically tied: metabolism and immune cell function. Current Opinion in Biotechnology, 2021, 68, iii-v.	6.6	O
12	High Glucose Enhances Cytotoxic T Lymphocyte-Mediated Cytotoxicity. Frontiers in Immunology, 2021, 12, 689337.	4.8	12
13	Fragile X mental retardation protein protects against tumour necrosis factor-mediated cell death and liver injury. Gut, 2020, 69, 133-145.	12.1	14
14	Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. European Journal of Immunology, 2020, 50, 1626-1642.	2.9	28
15	Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Reports, 2020, 32, 107848.	6.4	100
16	Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism, 2020, 31, 920-936.e7.	16.2	109
17	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
18	Choline acetyltransferase–expressing T cells are required to control chronic viral infection. Science, 2019, 363, 639-644.	12.6	90

#	Article	IF	Citations
19	Protection from EAE in DOCK8 mutant mice occurs despite increased Th17 cell frequencies in the periphery. European Journal of Immunology, 2019, 49, 770-781.	2.9	3
20	IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications, 2019, 10, 5722.	12.8	68
21	The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiological Reviews, 2019, 99, 115-160.	28.8	275
22	B-Cell Metabolic Remodeling and Cancer. Trends in Cancer, 2018, 4, 138-150.	7.4	50
23	Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends in Immunology, 2018, 39, 489-502.	6.8	229
24	Survival of the fittest: Cancer challenges T cell metabolism. Cancer Letters, 2018, 412, 216-223.	7.2	27
25	Tumor Necrosis Factor-Mediated Survival of CD169 ⁺ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection. Journal of Virology, 2018, 92, .	3.4	16
26	K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nature Communications, 2017, 8, 14003.	12.8	25
27	Glutathione Primes T Cell Metabolism for Inflammation. Immunity, 2017, 46, 675-689.	14.3	318
28	RAIDD Mediates TLR3 and IRF7 Driven Type I Interferon Production. Cellular Physiology and Biochemistry, 2016, 39, 1271-1280.	1.6	5
29	TNF and ROS Crosstalk in Inflammation. Trends in Cell Biology, 2016, 26, 249-261.	7.9	731
30	Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nature Communications, 2015, 6, 8576.	12.8	27
31	Regulation of tumour necrosis factor signalling: live or let die. Nature Reviews Immunology, 2015, 15, 362-374.	22.7	761
32	Autophagy-independent functions of UVRAG are essential for peripheral naive T-cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1119-1124.	7.1	21
33	Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell, 2015, 27, 314.	16.8	23
34	Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell, 2015, 27, 211-222.	16.8	748
35	Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation. Journal of Immunology, 2015, 194, 3723-3734.	0.8	123
36	Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1060-1065.	7.1	46

#	Article	IF	CITATIONS
37	Energy-sensitive regulation of Na ⁺ /K ⁺ -ATPase by Janus kinase 2. American Journal of Physiology - Cell Physiology, 2014, 306, C374-C384.	4.6	23
38	Reduced type I interferon production by dendritic cells and weakened antiviral immunity in patients with Wiskott-Aldrich syndrome protein deficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 815-824.e2.	2.9	27
39	Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle, 2013, 12, 3421-3432.	2.6	55
40	BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. Journal of Experimental Medicine, 2013, 210, 1529-1544.	8.5	239
41	IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. Journal of Clinical Investigation, 2013, 123, 247-260.	8.2	199
42	Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1410-1415.	7.1	170
43	BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. Journal of Cell Biology, 2013, 202, 2022OIA57.	5.2	0
44	The E3 ubiquitin ligase Mule acts through the ATM–p53 axis to maintain B lymphocyte homeostasis. Journal of Experimental Medicine, 2012, 209, 173-186.	8.5	58
45	2-Methoxyestradiol inhibits experimental autoimmune encephalomyelitis through suppression of immune cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21034-21039.	7.1	45
46	IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature, 2012, 488, 656-659.	27.8	474
47	The NF-κB regulator MALT1 determines the encephalitogenic potential of Th17 cells. Journal of Clinical Investigation, 2012, 122, 4698-4709.	8.2	106
48	Enterohaemorrhagic, but not enteropathogenic, Escherichia coli infection of epithelial cells disrupts signalling responses to tumour necrosis factor-alpha. Microbiology (United Kingdom), 2011, 157, 2963-2973.	1.8	7
49	Histone deacetylase inhibitorâ€induced sensitization to TNFα/TRAILâ€mediated apoptosis in cervical carcinoma cells is dependent on HPV oncogene expression. International Journal of Cancer, 2010, 127, 1384-1392.	5.1	24
50	HUNK suppresses metastasis of basal type breast cancers by disrupting the interaction between PP2A and cofilin-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2622-2627.	7.1	39
51	Phosphorylation of CARMA1 by HPK1 is critical for NF-κB activation in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14508-14513.	7.1	60
52	Lack of T-Cell Receptor–Induced Signaling Is Crucial for CD95 Ligand Up-regulation and Protects Cutaneous T-Cell Lymphoma Cells from Activation-Induced Cell Death. Cancer Research, 2009, 69, 4175-4183.	0.9	51
53	Mitochondrial cell death effectors. Current Opinion in Cell Biology, 2009, 21, 871-877.	5.4	347
54	Concepts of activated T cell death. Critical Reviews in Oncology/Hematology, 2008, 66, 52-64.	4.4	115

#	Article	IF	CITATION
55	Caspase-cleaved HPK1 induces CD95L-independent activation-induced cell death in T and B lymphocytes. Blood, 2007, 110, 3968-3977.	1.4	40
56	In vitro generated human memory-like T cells are CD95 type II cells and resistant towards CD95-mediated apoptosis. European Journal of Immunology, 2006, 36, 2894-2903.	2.9	13
57	How T lymphocytes switch between life and death. European Journal of Immunology, 2006, 36, 1654-1658.	2.9	94
58	The c-FLIP–NH2 terminus (p22-FLIP) induces NF-κB activation. Journal of Experimental Medicine, 2006, 203, 1295-1305.	8.5	185
59	Activation or suppression of NFήB by HPK1 determines sensitivity to activation-induced cell death. EMBO Journal, 2005, 24, 4279-4290.	7.8	71
60	c-FLIPR, a New Regulator of Death Receptor-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 14507-14513.	3.4	236
61	HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F–p73 pathway. Oncogene, 2004, 23, 4807-4817.	5.9	43
62	Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology, 2004, 39, 645-654.	7.3	104