Naoki Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subcarrier-Index Modulation Aided OFDM - Will It Work?. IEEE Access, 2016, 4, 2580-2593.	2.6	167
2	50 Years of Permutation, Spatial and Index Modulation: From Classic RF to Visible Light Communications and Data Storage. IEEE Communications Surveys and Tutorials, 2018, 20, 1905-1938.	24.8	132
3	Maximizing Constrained Capacity of Power-Imbalanced Optical Wireless MIMO Communications Using Spatial Modulation. Journal of Lightwave Technology, 2015, 33, 519-527.	2.7	116
4	Generalized Spatial Modulation Based Reduced-RF-Chain Millimeter-Wave Communications. IEEE Transactions on Vehicular Technology, 2016, , 1-1.	3.9	64
5	Unified Differential Spatial Modulation. IEEE Wireless Communications Letters, 2014, 3, 337-340.	3.2	59
6	Sixty Years of Coherent Versus Non-Coherent Tradeoffs and the Road From 5G to Wireless Futures. IEEE Access, 2019, 7, 178246-178299.	2.6	49
7	Rectangular Differential Spatial Modulation for Open-Loop Noncoherent Massive-MIMO Downlink. IEEE Transactions on Wireless Communications, 2017, 16, 1908-1920.	6.1	43
8	Full-Diversity Dispersion Matrices From Algebraic Field Extensions for Differential Spatial Modulation. IEEE Transactions on Vehicular Technology, 2017, 66, 385-394.	3.9	41
9	Differential-Detection Aided Large-Scale Generalized Spatial Modulation is Capable of Operating in High-Mobility Millimeter-Wave Channels. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 1360-1374.	7.3	26
10	Algebraic Differential Spatial Modulation is Capable of Approaching the Performance of its Coherent Counterpart. IEEE Transactions on Communications, 2017, , 1-1.	4.9	23
11	Single-RF Index Shift Keying Aided Differential Space–Time Block Coding. IEEE Transactions on Signal Processing, 2018, 66, 773-788.	3.2	21
12	Differential Space-Time Coding Dispensing With Channel Estimation Approaches the Performance of Its Coherent Counterpart in the Open-Loop Massive MIMO-OFDM Downlink. IEEE Transactions on Communications, 2018, 66, 6190-6204.	4.9	20
13	Finite-Cardinality Single-RF Differential Space-Time Modulation for Improving the Diversity-Throughput Tradeoff. IEEE Transactions on Communications, 2019, 67, 318-335.	4.9	20
14	"Near-Perfect―Finite-Cardinality Generalized Space-Time Shift Keying. IEEE Journal on Selected Areas in Communications, 2019, 37, 2146-2164.	9.7	14
15	Differentially-Encoded Rectangular Spatial Modulation Approaches the Performance of Its Coherent Counterpart. IEEE Transactions on Communications, 2020, 68, 7593-7607.	4.9	11
16	Multicarrier Division Duplex Aided Millimeter Wave Communications. IEEE Access, 2019, 7, 100719-100732.	2.6	8
17	IMToolkit: An Open-Source Index Modulation Toolkit for Reproducible Research Based on Massively Parallel Algorithms. IEEE Access, 2019, 7, 93830-93846.	2.6	7
18	Space-, Time- and Frequency-Domain Index Modulation for Next-Generation Wireless: A Unified Single-/Multi-Carrier and Single-/Multi-RF MIMO Framework. IEEE Transactions on Wireless Communications, 2021, 20, 3847-3864.	6.1	7

ΝΑΟΚΙ ΙSHIKAWA

#	Article	IF	CITATIONS
19	Artificially Time-Varying Differential MIMO for Achieving Practical Physical Layer Security. IEEE Open Journal of the Communications Society, 2021, 2, 2180-2194.	4.4	6
20	Single- and Multiple-RF Aided Non-Coherent Generalized Spatial Modulation. , 2014, , .		5
21	Nulls in the Air: Passive and Low-Complexity QoS Estimation Method for a Large-Scale Wi-Fi Network Based on Null Function Data Frames. IEEE Access, 2019, 7, 28581-28591.	2.6	4
22	Exit-Chart-Based Design of Irregular Precoded Power-Imbalanced Optical Spatial Modulation. , 2015, , .		3
23	Subcarrier Subset Selection-Aided Transmit Precoding Achieves Full-Diversity in Index Modulation. IEEE Transactions on Vehicular Technology, 2019, 68, 11031-11041.	3.9	3
24	Quantum Speedup for Index Modulation. IEEE Access, 2021, 9, 111114-111124.	2.6	3
25	Optimal but Low-Complexity Optimization Method for Nonsquare Differential Massive MIMO. , 2021, , .		1
26	Error Probability Analysis for Time-Varying Chaos Unitary Matrix-Based Differential MIMO System. IEEE Wireless Communications Letters, 2022, 11, 1399-1403.	3.2	0