
Clare Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1905702/publications.pdf Version: 2024-02-01

CLARELLOVD

#	Article	IF	CITATIONS
1	Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 2022, 55, 542-556.e5.	6.6	96
2	Early life inter-kingdom interactions shape the immunological environment of the airways. Microbiome, 2022, 10, 34.	4.9	16
3	Pseudomonas aeruginosa: a pathogen making itself at home. Trends in Immunology, 2022, 43, 497-499.	2.9	2
4	Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunology, 2022, 15, 952-963.	2.7	15
5	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	1.4	3
6	The Respiratory Microbiome in Chronic Hypersensitivity Pneumonitis Is Distinct from That of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 339-347.	2.5	45
7	Regulation of immune responses by the airway epithelial cell landscape. Nature Reviews Immunology, 2021, 21, 347-362.	10.6	209
8	Experimental Mouse Models of Asthma and Analysis of CD4 T Cells. Methods in Molecular Biology, 2021, 2285, 329-348.	0.4	3
9	Overlapping and distinct features of viral and allergen immunity in the human lung. Immunity, 2021, 54, 617-631.	6.6	17
10	Airway macrophage-intrinsic TGF-β1 regulates pulmonary immunity during early-life allergen exposure. Journal of Allergy and Clinical Immunology, 2021, 147, 1892-1906.	1.5	19
11	DNA Methylome Alterations Are Associated with Airway Macrophage Differentiation and Phenotype during Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 954-966.	2.5	17
12	IRF5 regulates airway macrophage metabolic responses. Clinical and Experimental Immunology, 2021, 204, 134-143.	1.1	9
13	Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity. Journal of Experimental Medicine, 2021, 218, .	4.2	15
14	A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 666-678.e9.	1.5	39
15	Abnormal pro-gly-pro pathway and airway neutrophilia in pediatric cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, 40-48.	0.3	17
16	High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.	7.0	32
17	Enhanced frequency and function of follicular T cells in the tonsils of house dust miteâ€sensitized children. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1240-1243.	2.7	5
18	Early origins of lung disease: towards an interdisciplinary approach. European Respiratory Review, 2020, 29, 200191.	3.0	21

Clare Lloyd

#	Article	IF	CITATIONS
19	Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. Journal of Experimental Medicine, 2020, 217, .	4.2	113
20	Itaconate controls the severity of pulmonary fibrosis. Science Immunology, 2020, 5, .	5.6	73
21	Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology, 2020, 160, 171-182.	2.0	103
22	Impaired airway epithelial cell woundâ€healing capacity is associated with airway remodelling following RSV infection in severe preschool wheeze. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3195-3207.	2.7	18
23	Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. European Respiratory Journal, 2020, 56, 2000260.	3.1	92
24	Circadian asthma airway responses are gated by REV-ERBα. European Respiratory Journal, 2020, 56, 1902407.	3.1	24
25	Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent. European Respiratory Journal, 2020, 55, 1901519.	3.1	42
26	Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Research, 2020, 5, 101.	0.9	4
27	Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Research, 2020, 5, 101.	0.9	4
28	Group 2 ILC Functional Assays in Allergic Airway Inflammation. Methods in Molecular Biology, 2020, 2121, 99-114.	0.4	1
29	A Vision for Cytokine Biology with 20/20 Clarity. Function, 2020, 2, zqaa042.	1.1	1
30	Biology and Assessment of Airway Inflammation. , 2019, , 101-119.e4.		2
31	The Immunopathogenesis of Asthma. , 2019, , 665-676.e3.		О
32	Opening the Window of Immune Opportunity: Treating Childhood Asthma. Trends in Immunology, 2019, 40, 786-798.	2.9	18
33	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	5.8	65
34	Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte–dendritic cell antigen presentation. Science Immunology, 2019, 4, .	5.6	53
35	Response to Comment on "An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness― Science Translational Medicine, 2019, 11, .	5.8	2
36	Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Science Immunology, 2019, 4, .	5.6	89

#	Article	IF	CITATIONS
37	Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. European Respiratory Journal, 2019, 54, 1801809.	3.1	51
38	The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 209-219.	2.5	82
39	Regulation of ectodomain shedding of ADAM33 inÂvitro and inÂvivo. Journal of Allergy and Clinical Immunology, 2019, 143, 2281-2284.e3.	1.5	1
40	Regulatory cytokine function in the respiratory tract. Mucosal Immunology, 2019, 12, 589-600.	2.7	81
41	Airway macrophages as the guardians of tissue repair in the lung. Immunology and Cell Biology, 2019, 97, 246-257.	1.0	114
42	Targeting the <scp>ICOS</scp> / <scp>ICOS</scp> ‣ pathway in a mouse model of established allergic asthma disrupts T follicular helper cell responses and ameliorates disease. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 650-662.	2.7	41
43	Lower airway microbiota associates with inflammatory phenotype in severe preschool wheeze. Journal of Allergy and Clinical Immunology, 2019, 143, 1607-1610.e3.	1.5	43
44	The <i>ORMDL3</i> Asthma Gene Regulates <i>ICAM1</i> and Has Multiple Effects on Cellular Inflammation. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 478-488.	2.5	67
45	Pulmonary Group 2 Innate Lymphoid Cell Phenotype Is Context Specific: Determining the Effect of Strain, Location, and Stimuli. Frontiers in Immunology, 2019, 10, 3114.	2.2	37
46	Manipulation of Dipeptidylpeptidase 10 in mouse and human <i>in vivo</i> and <i>in vitro</i> models indicates a protective role in asthma. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	11
47	Epithelial-derived TGF-β1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunology, 2018, 11, 523-535.	2.7	68
48	Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection. Thorax, 2018, 73, 546-556.	2.7	53
49	After asthma: redefining airways diseases. Lancet, The, 2018, 391, 350-400.	6.3	744
50	Pulmonary epithelial barrier and immunological functions at birth and in early life - key determinants of the development of asthma? A description of the protocol for the Breathing Together study. Wellcome Open Research, 2018, 3, 60.	0.9	14
51	Inception of early-life allergen–induced airway hyperresponsiveness is reliant on IL-13 ⁺ CD4 ⁺ T cells. Science Immunology, 2018, 3, .	5.6	50
52	Epigenetic Control of Interleukin-9 in Asthma. New England Journal of Medicine, 2018, 379, 87-89.	13.9	8
53	Type 2 immunity: Expanding our view. Science Immunology, 2018, 3, .	5.6	190
54	An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Science Translational Medicine, 2018, 10, .	5.8	33

#	Article	IF	CITATIONS
55	The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent?. Clinical and Experimental Allergy, 2018, 48, 1275-1285.	1.4	30
56	Intraepithelial neutrophils in pediatric severe asthma are associated with better lung function. Journal of Allergy and Clinical Immunology, 2017, 139, 1819-1829.e11.	1.5	96
57	Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity, 2017, 46, 549-561.	6.6	196
58	The development of novel LTA4H modulators to selectively target LTB4 generation. Scientific Reports, 2017, 7, 44449.	1.6	27
59	Heterozygous <i>Vangl2 Looptail</i> mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair. DMM Disease Models and Mechanisms, 2017, 10, 409-423.	1.2	31
60	Reply. Journal of Allergy and Clinical Immunology, 2017, 140, 1211-1212.	1.5	1
61	Development of allergic immunity in early life. Immunological Reviews, 2017, 278, 101-115.	2.8	20
62	A critical role for IRF5 in regulating allergic airway inflammation. Mucosal Immunology, 2017, 10, 716-726.	2.7	31
63	Pulmonary ORMDL3 is critical for induction of Alternaria-induced allergic airways disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1496-1507.e3.	1.5	71
64	Location, Location, Location: Localized Memory Cells Take Residence in the Allergic Lung. Immunity, 2016, 44, 13-15.	6.6	4
65	Prostacyclin as a Potential Novel Means to Manipulate Type 2 Innate Lymphoid Cell Function. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 2-4.	2.5	1
66	Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease?. Trends in Molecular Medicine, 2016, 22, 303-316.	3.5	239
67	Type 2 innate lymphoid cells in induced sputum from children with severe asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 624-626.e6.	1.5	133
68	Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. Journal of Allergy and Clinical Immunology, 2015, 136, 312-322.e7.	1.5	178
69	Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L658-L671.	1.3	35
70	Epithelial cytokines and pulmonary allergic inflammation. Current Opinion in Immunology, 2015, 34, 52-58.	2.4	107
71	Perinatal paracetamol exposure in mice does not affect the development of allergic airways disease in early life. Thorax, 2015, 70, 528-536.	2.7	13
72	Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection. Nature Communications, 2015, 6, 8423.	5.8	53

#	Article	IF	CITATIONS
73	Novel concepts in airway inflammation and remodelling in asthma. European Respiratory Journal, 2015, 46, 1796-1804.	3.1	143
74	Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015, 70, 1189-1196.	2.7	359
75	Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity, 2015, 43, 945-958.	6.6	137
76	Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 80-89.	2.7	69
77	Innate lymphoid cells are proportionally higher in children with atopy. , 2015, , .		0
78	Chair's Summary: Innate and Adaptive Immune Responses in Airway Disease. Annals of the American Thoracic Society, 2014, 11, S234-S235.	1.5	3
79	Vitamin <scp>D</scp> deficiency induces <scp>T</scp> h2 skewing and eosinophilia in neonatal allergic airways disease. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1380-1389.	2.7	90
80	A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax, 2014, 69, 565-573.	2.7	35
81	Eosinophils in the pathogenesis of paediatric severe asthma. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 143-148.	1.1	44
82	γÎT cells regulate chronic airway inflammation and development of airway remodelling. Clinical and Experimental Allergy, 2014, 44, 1386-1398.	1.4	10
83	Amelioration of ovalbumin-induced allergic airway disease following Der p 1 peptide immunotherapy is not associated with induction of IL-35. Mucosal Immunology, 2014, 7, 379-390.	2.7	19
84	Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations. Journal of Allergy and Clinical Immunology, 2014, 134, 583-592.e6.	1.5	211
85	Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nature Medicine, 2014, 20, 642-647.	15.2	480
86	Year in review 2013: basic science and epidemiology. Thorax, 2014, 69, 505-507.	2.7	0
87	Mouse Models of Allergic Airways Disease. , 2014, , 842-860.		0
88	Eosinophils in the Spotlight: Finding the link between obesity and asthma. Nature Medicine, 2013, 19, 976-977.	15.2	28
89	Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunology, 2013, 6, 335-346.	2.7	186
90	Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax, 2013, 68, 380-384.	2.7	34

#	Article	IF	CITATIONS
91	Endothelinâ€l directs airway remodeling and hyperâ€reactivity in a murine asthma model. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1579-1588.	2.7	28
92	IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 676-685.e13.	1.5	219
93	T cells in asthma: Influences of genetics, environment, and T-cell plasticity. Journal of Allergy and Clinical Immunology, 2013, 131, 1267-1274.	1.5	81
94	IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax, 2013, 68, 82-90.	2.7	142
95	Lung Macrophages Contribute to House Dust Mite Driven Airway Remodeling via HIF-1α. PLoS ONE, 2013, 8, e69246.	1.1	28
96	Novel Keto-phospholipids Are Generated by Monocytes and Macrophages, Detected in Cystic Fibrosis, and Activate Peroxisome Proliferator-activated Receptor-γ. Journal of Biological Chemistry, 2012, 287, 41651-41666.	1.6	52
97	Interleukin-17 and Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 109-110.	2.5	3
98	Activin AÂand TGF-β promote TH9 cell–mediated pulmonary allergic pathology. Journal of Allergy and Clinical Immunology, 2012, 129, 1000-1010.e3.	1.5	151
99	Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines. Journal of Allergy and Clinical Immunology, 2012, 129, 974-982.e13.	1.5	271
100	Altered regulation of Toll-like receptor responses impairs antibacterial immunity in the allergic lung. Mucosal Immunology, 2012, 5, 524-534.	2.7	53
101	Orchestrating house dust mite-associated allergy in the lung. Trends in Immunology, 2011, 32, 402-411.	2.9	354
102	The Th17 Pathway in Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 252-258.	2.5	197
103	IL-9 Governs Allergen-induced Mast Cell Numbers in the Lung and Chronic Remodeling of the Airways. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 865-875.	2.5	187
104	Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood, 2010, 116, 2942-2949.	0.6	71
105	Chronic inflammation and asthma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 690, 24-39.	0.4	323
106	Bone Morphogenetic Protein (BMP)-4 and BMP-7 regulate differentially Transforming Growth Factor (TGF)-β1 in normal human lung fibroblasts (NHLF). Respiratory Research, 2010, 11, 85.	1.4	83
107	IL-33 family members and asthma – bridging innate and adaptive immune responses. Current Opinion in Immunology, 2010, 22, 800-806.	2.4	143
108	Developments in the field of allergy in 2009 through the eyes of <i>Clinical and Experimental Allergy</i> . Clinical and Experimental Allergy, 2010, 40, 1611-1631.	1.4	3

Clare Lloyd

#	Article	IF	CITATIONS
109	Asthma and allergy: The emerging epithelium. Nature Medicine, 2010, 16, 273-274.	15.2	37
110	Functions of T cells in asthma: more than just TH2 cells. Nature Reviews Immunology, 2010, 10, 838-848.	10.6	475
111	CC Chemokine Receptor 4 (CCR4) in human allergenâ€induced late nasal responses. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1126-1133.	2.7	38
112	Tolerizing allergic responses in the lung. Mucosal Immunology, 2010, 3, 334-344.	2.7	19
113	Overexpression of Smad2 Drives House Dust Mite–mediated Airway Remodeling and Airway Hyperresponsiveness via Activin and IL-25. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 143-154.	2.5	92
114	Resolution of Allergic Airway Inflammation and Airway Hyperreactivity Is Mediated by IL-17–producing γÎ⊤ Cells. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 464-476.	2.5	89
115	Resolution of Allergic Inflammation and Airway Hyperreactivity Is Dependent upon Disruption of the T1/ST2–IL-33 Pathway. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 772-781.	2.5	207
116	Pathophysiological Features of Asthma Develop in Parallel in House Dust Mite–Exposed Neonatal Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 281-289.	1.4	87
117	Suppression of allergic airway inflammation and IgE responses by a class I restricted allergen peptide vaccine. Mucosal Immunology, 2009, 2, 54-62.	2.7	14
118	Peptide immunotherapy in allergic asthma generates IL-10–dependent immunological tolerance associated with linked epitope suppression. Journal of Experimental Medicine, 2009, 206, 1535-1547.	4.2	192
119	Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease. Journal of Experimental Medicine, 2009, 206, 1769-1785.	4.2	108
120	CXCR2 Mediates the Recruitment of Endothelial Progenitor Cells During Allergic Airways Remodeling. Stem Cells, 2009, 27, 3074-3081.	1.4	53
121	Inhaled house dust mite induces pulmonary T helper 2 cytokine production. Clinical and Experimental Allergy, 2009, 39, 1597-1610.	1.4	76
122	Dust mites' dirty dealings in the lung. Nature Medicine, 2009, 15, 366-367.	15.2	21
123	Chemokine responsiveness of CD4+ CD25+ regulatory and CD4+ CD25â~' T cells from atopic and nonatopic donors. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1121-1129.	2.7	23
124	Regulatory T Cells in Asthma. Immunity, 2009, 31, 438-449.	6.6	314
125	Activin and transforming growth factor-Î ² signaling pathways are activated after allergen challenge in mild asthma. Journal of Allergy and Clinical Immunology, 2009, 124, 454-462.	1.5	69
126	Phosphatidylethanolamine-esterified Eicosanoids in the Mouse. Journal of Biological Chemistry, 2009, 284, 21185-21191.	1.6	72

#	Article	IF	CITATIONS
127	Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nature Medicine, 2008, 14, 199-204.	15.2	339
128	Respiratory syncytial virus infection provokes airway remodelling in allergenâ€exposed mice in absence of prior allergen sensitization. Clinical and Experimental Allergy, 2008, 38, 1016-1024.	1.4	51
129	CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. Journal of Allergy and Clinical Immunology, 2008, 122, 617-624.e6.	1.5	172
130	Innate responsiveness of CD8 memory T-cell populations nonspecifically inhibits allergic sensitization. Journal of Allergy and Clinical Immunology, 2008, 122, 1014-1021.e4.	1.5	24
131	Allergen-induced airway remodelling. European Respiratory Journal, 2007, 29, 1020-1032.	3.1	66
132	Th2-driven, allergen-induced airway inflammation is reduced after treatment with anti–Tim-3 antibody in vivo. Journal of Experimental Medicine, 2007, 204, 1289-1294.	4.2	55
133	Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nature Medicine, 2007, 13, 570-578.	15.2	164
134	T lymphocytes expressing CCR3 are increased in allergic rhinitis compared with non-allergic controls and following allergen immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 59-65.	2.7	36
135	Eosinophils in the pathogenesis of allergic airways disease. Cellular and Molecular Life Sciences, 2007, 64, 1269-1289.	2.4	117
136	Building better mouse models of asthma. Current Allergy and Asthma Reports, 2007, 7, 231-236.	2.4	45
137	Chemokine Receptors. Treatments in Respiratory Medicine, 2006, 5, 159-166.	1.4	8
138	Effects of steroid treatment on lung CC chemokines, apoptosis and transepithelial cell clearance during development and resolution of allergic airway inflammation. Clinical and Experimental Allergy, 2006, 36, 111-121.	1.4	31
139	Screening-based Discovery and Structural Dissection of a Novel Family 18 Chitinase Inhibitor. Journal of Biological Chemistry, 2006, 281, 27278-27285.	1.6	53
140	Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clinical and Experimental Allergy, 2005, 35, 388-396.	1.4	56
141	Manipulation of Allergen-Induced Airway Remodeling by Treatment with Anti-TGF-β Antibody: Effect on the Smad Signaling Pathway. Journal of Immunology, 2005, 174, 5774-5780.	0.4	236
142	Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. Journal of Experimental Medicine, 2005, 202, 1539-1547.	4.2	473
143	Animal Models to Study Chemokine Receptor Function: In Vivo Mouse Models of Allergic Airway Inflammation. , 2004, 239, 199-210.		9
144	CXCR1+CD4+T Cells in Human Allergic Disease. Journal of Immunology, 2004, 172, 268-273.	0.4	24

#	Article	IF	CITATIONS
145	Matrix Metalloproteinase-9 Deficiency Results in Enhanced Allergen-Induced Airway Inflammation. Journal of Immunology, 2004, 172, 2586-2594.	0.4	170
146	Prolonged allergen challenge in mice leads to persistent airway remodelling. Clinical and Experimental Allergy, 2004, 34, 497-507.	1.4	202
147	A Critical Role for Eosinophils in Allergic Airways Remodeling. Science, 2004, 305, 1776-1779.	6.0	807
148	Modelling airway remodelling in asthma. Drug Discovery Today: Disease Models, 2004, 1, 425-430.	1.2	1
149	Adenoid-derived TH2 cells reactive to allergen and recall antigen express CC chemokine receptor 4. Journal of Allergy and Clinical Immunology, 2003, 112, 1155-1161.	1.5	17
150	Chemokines in allergic airway disease. Current Opinion in Pharmacology, 2003, 3, 443-448.	1.7	60
151	CC Chemokine Ligand 1 Promotes Recruitment of Eosinophils But Not Th2 Cells During the Development of Allergic Airways Disease. Journal of Immunology, 2003, 170, 4810-4817.	0.4	53
152	CCR4 blockade does not inhibit allergic airways inflammation. Journal of Leukocyte Biology, 2003, 74, 558-563.	1.5	54
153	The Absence of Interleukin 9 Does Not Affect the Development of Allergen-induced Pulmonary Inflammation nor Airway Hyperreactivity. Journal of Experimental Medicine, 2002, 195, 51-57.	4.2	134
154	Chemokines, innate and adaptive immunity, and respiratory disease: Table 1—. European Respiratory Journal, 2002, 19, 350-355.	3.1	56
155	Regulation of CCR4 expression after segmental bronchial allergen challenge in atopic asthmatics. Journal of Allergy and Clinical Immunology, 2002, 109, S41-S41.	1.5	1
156	Characterisation and regulation of lymphocyte chemokine receptor expression in normal and atopic donors. Journal of Allergy and Clinical Immunology, 2002, 109, S62-S63.	1.5	0
157	Asthma: T-bet — A Master Controller?. Current Biology, 2002, 12, R322-R324.	1.8	37
158	CCR4 in human allergen-induced late responses in the skin and lung. European Journal of Immunology, 2002, 32, 1933.	1.6	60
159	Chemokines in allergic lung inflammation. Immunology, 2002, 105, 144-154.	2.0	60
160	Mouse models of allergic airway disease. Advances in Immunology, 2001, 77, 263-295.	1.1	90
161	Resolution of Bronchial Hyperresponsiveness and Pulmonary Inflammation Is Associated with IL-3 and Tissue Leukocyte Apoptosis. Journal of Immunology, 2001, 166, 2033-2040.	0.4	60
162	Cc Chemokine Receptor (Ccr)3/Eotaxin Is Followed by Ccr4/Monocyte-Derived Chemokine in Mediating Pulmonary T Helper Lymphocyte Type 2 Recruitment after Serial Antigen Challenge in Vivo. Journal of Experimental Medicine, 2000, 191, 265-274.	4.2	291

#	Article	IF	CITATIONS
163	Critical Involvement of the Chemotactic Axis CXCR4/Stromal Cell-Derived Factor-1α in the Inflammatory Component of Allergic Airway Disease. Journal of Immunology, 2000, 165, 499-508.	0.4	181
164	Murine Model of Crescentic Nephritis. , 2000, 138, 311-318.		1
165	Biotherapeutic Targets for the Treatment of Allergic Airway Disease. American Journal of Respiratory and Critical Care Medicine, 2000, 162, S179-S184.	2.5	6
166	The CD28-Related Molecule ICOS Is Required for Effective T Cell–Dependent Immune Responses. Immunity, 2000, 13, 95-105.	6.6	480
167	Crucial Role of the Interleukin 1 Receptor Family Member T1/St2 in T Helper Cell Type 2–Mediated Lung Mucosal Immune Responses. Journal of Experimental Medicine, 1999, 190, 895-902.	4.2	346
168	Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions. Trends in Immunology, 1999, 20, 500-504.	7.5	114
169	Prolonged Eosinophil Accumulation in Allergic Lung Interstitium of ICAM-2-Deficient Mice Results in Extended Hyperresponsiveness. Immunity, 1999, 10, 9-19.	6.6	129
170	Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. Journal of Immunology, 1999, 163, 403-11.	0.4	199
171	The Coordinated Action of CC Chemokines in the Lung Orchestrates Allergic Inflammation and Airway Hyperresponsiveness. Journal of Experimental Medicine, 1998, 188, 157-167.	4.2	513
172	The role of chemokines in tissue inflammation and autoimmunity in renal diseases. Current Opinion in Nephrology and Hypertension, 1998, 7, 281-288.	1.0	10
173	The Chemotactic Cytokine Eotaxin Acts as a Granulocyte-Macrophage Colony-Stimulating Factor During Lung Inflammation. Blood, 1998, 91, 1909-1916.	0.6	55
174	Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. Journal of Leukocyte Biology, 1997, 62, 676-680.	1.5	92
175	RANTES and Monocyte Chemoattractant Protein–1 (MCP-1) Play an Important Role in the Inflammatory Phase of Crescentic Nephritis, but Only MCP-1 Is Involved in Crescent Formation and Interstitial Fibrosis. Journal of Experimental Medicine, 1997, 185, 1371-1380.	4.2	462
176	Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 1997, 387, 611-617.	13.7	631
177	Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors Journal of Clinical Investigation, 1996, 98, 2332-2345.	3.9	401