
Zahoor Ahmad Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1905462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress on siRNA-based gene therapy targeting secondary injury after intracerebral hemorrhage. Gene Therapy, 2023, 30, 1-7.	2.3	6
2	Oxidative stress in chronic and acute CNS insults. Neurochemistry International, 2022, 153, 105274.	1.9	0
3	Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regeneration Research, 2022, 17, 1717.	1.6	4
4	Synthesis and Development of a Novel First-in-Class Cofilin Inhibitor for Neuroinflammation in Hemorrhagic Brain Injury. ACS Chemical Neuroscience, 2022, 13, 1014-1029.	1.7	8
5	The influence of gut microbiota alteration on age-related neuroinflammation and cognitive decline. Neural Regeneration Research, 2022, 17, 2407.	1.6	19
6	Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. ELife, 2022, 11, .	2.8	22
7	Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology and Cognitive Impairments. CNS and Neurological Disorders - Drug Targets, 2021, 20, 312-326.	0.8	11
8	Potential Benefits of N-Acetylcysteine in Preventing Pregabalin-Induced Seeking-Like Behavior. Healthcare (Switzerland), 2021, 9, 376.	1.0	1
9	Induction of Inflammation in the Brain by Daily JUUL Aerosol Inhalation. FASEB Journal, 2021, 35, .	0.2	0
10	Inflammation Drives Alzheimer's Disease: Emphasis on 5-lipoxygenase Pathways. Current Neuropharmacology, 2021, 19, 885-895.	1.4	6
11	Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Scientific Reports, 2021, 11, 10577.	1.6	9
12	The structural simplification of lysergic acid as a natural lead for synthesizing novel anti-Alzheimer agents. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128205.	1.0	3
13	Type-I diabetes aggravates post-hemorrhagic stroke cognitive impairment by augmenting oxidative stress and neuroinflammation in mice. Neurochemistry International, 2021, 149, 105151.	1.9	12
14	Mechanistic role of boswellic acids in Alzheimer's disease: Emphasis on anti-inflammatory properties. Biomedicine and Pharmacotherapy, 2021, 144, 112250.	2.5	23
15	Neuroprotective and Anti-neuroinflammatory Properties of Ebselen Derivatives and Their Potential to Inhibit Neurodegeneration. ACS Chemical Neuroscience, 2020, 11, 3008-3016.	1.7	29
16	Sex differences in pregabalin-seeking like behavior in a conditioned place preference paradigm. Saudi Pharmaceutical Journal, 2020, 28, 1749-1755.	1.2	7
17	Gabapentin-induced drug-seeking-like behavior: a potential role for the dopaminergic system. Scientific Reports, 2020, 10, 10445.	1.6	12
18	The role of cofilin in age-related neuroinflammation. Neural Regeneration Research, 2020, 15, 1451.	1.6	17

#	Article	IF	CITATIONS
19	Pregabalin: Potential for Addiction and a Possible Glutamatergic Mechanism. Scientific Reports, 2019, 9, 15136.	1.6	18
20	Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies. Neurochemical Research, 2019, 44, 1228-1242.	1.6	18
21	The GSK3β inhibitor, TDZD-8, rescues cognition in a zebrafish model of okadaic acid-induced Alzheimer's disease. Neurochemistry International, 2019, 122, 31-37.	1.9	36
22	Lanthionine ketimine-5-ethyl ester provides neuroprotection in a zebrafish model of okadaic acid-induced Alzheimer's disease. Neurochemistry International, 2018, 115, 61-68.	1.9	27
23	Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke. Free Radical Biology and Medicine, 2018, 115, 395-404.	1.3	31
24	Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK–STAT Pathway. Molecular Neurobiology, 2018, 55, 1676-1691.	1.9	63
25	Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice. Neuroscience, 2018, 383, 33-45.	1.1	15
26	HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury. Brain Research, 2017, 1662, 1-6.	1.1	11
27	Bioactivities of n-hexane fraction of Vateria copallifera and GC–MS analysis of its phytoconstituents. Industrial Crops and Products, 2017, 97, 87-92.	2.5	6
28	Cofilin signaling in hemin-induced microglial activation and inflammation. Journal of Neuroimmunology, 2017, 313, 46-55.	1.1	20
29	Tanshinone IIA Inhibits VEGF Secretion and HIF-1α Expression in Cultured Human Retinal Pigment Epithelial Cells under Hypoxia. Current Eye Research, 2017, 42, 1667-1673.	0.7	16
30	The Interplay between Cofilin and Phospho-Cofilin: Its Role in Maintaining Blood Brain Barrier Integrity. CNS and Neurological Disorders - Drug Targets, 2017, 16, 279-290.	0.8	15
31	Protective Role of Arginase II in Cerebral Ischemia and Excitotoxicity. Journal of Neurology and Neuroscience, 2016, 7, .	0.4	14
32	Development of a Novel and Robust Pharmacological Model of Okadaic Acid-induced Alzheimer's Disease in Zebrafish. CNS and Neurological Disorders - Drug Targets, 2016, 15, 86-94.	0.8	26
33	Cofilin Inhibition Restores Neuronal Cell Death in Oxygen–Clucose Deprivation Model of Ischemia. Molecular Neurobiology, 2016, 53, 867-878.	1.9	50
34	Obesity and hyperglycemia lead to impaired postâ€ischemic recovery after permanent ischemia in mice. Obesity, 2016, 24, 417-423.	1.5	20
35	Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway. Translational Stroke Research, 2016, 7, 120-131.	2.3	50
36	Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke. Translational Stroke Research, 2016, 7, 33-41.	2.3	48

ZAHOOR AHMAD SHAH

#	Article	IF	CITATIONS
37	Transgenic Mice Overexpressing Human Angiotensin I Receptor Gene Are Susceptible to Stroke Injury. Molecular Neurobiology, 2016, 53, 1533-1539.	1.9	7
38	Current Perspectives on the Beneficial Role of <i>Ginkgo biloba</i> in Neurological and Cerebrovascular Disorders. Integrative Medicine Insights, 2015, 10, IMI.S25054.	4.2	97
39	Withania somnifera Improves Ischemic Stroke Outcomes by Attenuating PARP1-AIF-Mediated Caspase-Independent Apoptosis. Molecular Neurobiology, 2015, 52, 1093-1105.	1.9	38
40	Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Molecular Neurobiology, 2015, 52, 1726-1734.	1.9	35
41	Withania somnifera: a pre-clinical study on neuroregenerative therapy for stroke. Neural Regeneration Research, 2015, 10, 183.	1.6	17
42	Heme Oxygenase 1-Mediated Neurogenesis Is Enhanced by Ginkgo biloba (EGb 761®) After Permanent Ischemic Stroke in Mice. Molecular Neurobiology, 2014, 49, 945-956.	1.9	61
43	Characterization and Evaluation of 5-Fluorouracil-Loaded Solid Lipid Nanoparticles Prepared via a Temperature-Modulated Solidification Technique. AAPS PharmSciTech, 2014, 15, 1498-1508.	1.5	42
44	Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. NeuroToxicology, 2014, 45, 100-110.	1.4	78
45	Repair and regeneration properties of Ginkgo biloba after ischemic brain injury. Neural Regeneration Research, 2014, 9, 1104.	1.6	0
46	Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 2013, 15, 1.	0.8	59
47	Natural products inspired synthesis of neuroprotective agents against H2O2-induced cell death. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1232-1237.	1.0	10
48	Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochemistry International, 2013, 62, 189-197.	1.9	63
49	A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochemistry International, 2012, 61, 1357-1363.	1.9	39
50	Sirtuins in Neurodegenerative Diseases: A Biological-Chemical Perspective. Neurodegenerative Diseases, 2012, 9, 1-10.	0.8	33
51	Calcium Alginate Nanoparticles Synthesized Through a Novel Interfacial Cross-Linking Method as a Potential Protein Drug Delivery System. Journal of Pharmaceutical Sciences, 2012, 101, 2177-2184.	1.6	47
52	Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiology of Disease, 2012, 46, 180-189.	2.1	63
53	Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience, 2011, 180, 248-255.	1.1	116
54	Simvastatin and Other HMG-CoA Reductase Inhibitors on Brain Cholesterol Levels in Alzheimers Disease. Current Alzheimer Research, 2011, 8, 434-442.	0.7	20

ZAHOOR AHMAD SHAH

#	Article	IF	CITATIONS
55	The PGE2 EP2 receptor and its selective activation are beneficial against ischemic stroke. Experimental & Translational Stroke Medicine, 2010, 2, 12.	3.2	29
56	The Flavanol (â^')-Epicatechin Prevents Stroke Damage through the Nrf2/HO1 Pathway. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1951-1961.	2.4	206
57	Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiology of Disease, 2009, 35, 264-269.	2.1	61
58	Erectile Dysfunction in a Murine Model of Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 644-650.	2.5	70
59	Role of combined administration of Tiron and glutathione against aluminum-induced oxidative stress in rat brain. Journal of Trace Elements in Medicine and Biology, 2007, 21, 63-70.	1.5	43
60	Immobilization stress causes extra-cellular oxidant–antioxidant imbalance in rats: Restoration by L-NAME and vitamin E. European Neuropsychopharmacology, 2006, 16, 260-267.	0.3	26
61	Use of an Optimized Transient Occlusion of the Middle Cerebral Artery Protocol for the Mouse Stroke Model. Journal of Stroke and Cerebrovascular Diseases, 2006, 15, 133-138.	0.7	41
62	Urinary protein expression patterns in children with sleep-disordered breathing: Preliminary findings. Sleep Medicine, 2006, 7, 221-227.	0.8	49
63	Serum Proteomic Patterns Associated With Sleep-Disordered Breathing in Children. Pediatric Research, 2006, 59, 466-470.	1.1	42
64	Tyrosine hydroxylase expression and activity in the rat brain: differential regulation after long-term intermittent or sustained hypoxia. Journal of Applied Physiology, 2005, 99, 642-649.	1.2	58
65	Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. Journal of Ethnopharmacology, 2005, 101, 299-307.	2.0	68
66	Attenuation of Stress-Elicited Brain Catecholamines, Serotonin and Plasma Corticosterone Levels by Calcined Gold Preparations Used in Indian System of Medicine. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 469-474.	1.2	13
67	Ginkgo biloba normalises stress-elevated alterations in brain catecholamines, serotonin and plasma corticosterone levels. European Neuropsychopharmacology, 2003, 13, 321-325.	0.3	43
68	Protective effect of Tiron (4,5-dihydroxybenzene-1,3-disulfonic acid disodium salt) against beryllium-induced maternal and fetal toxicity in rats. Archives of Toxicology, 2002, 76, 442-448.	1.9	15
69	Antioxidant/Restorative Effects of Calcined Gold Preparations Used in Indian Systems of Medicine against Global and Focal Models of Ischaemia. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 254-259.	0.0	48