Vlad Shalaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904982/publications.pdf

Version: 2024-02-01

535 46,612 102 206
papers citations h-index g-index

550 550 550 24986 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	7
2	Electric field control of interaction between magnons and quantum spin defects. Physical Review Research, 2022, 4, .	1.3	8
3	Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics, 2022, 14, 148.	12.1	34
4	Optimizing Startshot Lightsail Design: A Generative Network-Based Approach. ACS Photonics, 2022, 9, 190-196.	3.2	8
5	Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. Nano Letters, 2022, 22, 4622-4629.	4.5	17
6	Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics, 2022, 11, 3035-3056.	2.9	22
7	Near-zero-index ultra-fast pulse characterization. Nature Communications, 2022, 13, .	5.8	6
8	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. Materials Today, 2021, 43, 27-36.	8.3	20
9	Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. ACS Photonics, 2021, 8, 521-530.	3.2	21
10	Machine Learning for Integrated Quantum Photonics. ACS Photonics, 2021, 8, 34-46.	3.2	30
11	Machine learning assisted quantum super-resolution microscopy. , 2021, , .		1
12	Single and Multiâ€Mode Directional Lasing from Arrays of Dielectric Nanoresonators. Laser and Photonics Reviews, 2021, 15, 2000411.	4.4	51
13	High-harmonic Generation in Metallic Titanium Nitride. , 2021, , .		O
14	Controlling All-optical Switching Speeds in an Epsilon-Near-Zero Enhanced Metasurface. , 2021, , .		0
15	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
16	High-harmonic generation in metallic titanium nitride. Nature Communications, 2021, 12, 4981.	5.8	22
17	Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. Optics Letters, 2021, 46, 5433.	1.7	4
18	High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications, 2021, 12, 5560.	5.8	130

#	Article	IF	Citations
19	Efficient Topology-Optimized Couplers for On-Chip Single-Photon Sources. ACS Photonics, 2021, 8, 3061-3068.	3.2	13
20	Metasurface design optimization via D-Wave based sampling., 2021,,.		1
21	Towards photonic time-crystals: observation of a femtosecond time-boundary in the refractive index. , 2021, , .		7
22	Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. Laser and Photonics Reviews, 2021, 15, 2000343.	4.4	56
23	A tribute to Mark Stockman. Nanophotonics, 2021, 10, 3569-3585.	2.9	0
24	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. ACS Applied Energy Materials, 2021, 4, 11367-11376.	2.5	10
25	Plasmonic hot-carriers and their applications: opinion. Optical Materials Express, 2021, 11, 3827.	1.6	5
26	Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. Nano Letters, 2021, 21, 8182-8189.	4.5	45
27	Deterministic Creation of Quantum Emitters in Hexagonal Boron Nitride on Non-patterned Substrates. , 2021, , .		0
28	Room-temperature single-photon emitters in silicon nitride. Science Advances, 2021, 7, eabj0627.	4.7	30
29	Machine learning framework for quantum sampling of highly constrained, continuous optimization problems. Applied Physics Reviews, 2021, 8, .	5.5	14
30	Broadband, Highâ€Speed, and Largeâ€Amplitude Dynamic Optical Switching with Yttriumâ€Doped Cadmium Oxide. Advanced Functional Materials, 2020, 30, 1908377.	7.8	38
31	Adversarial Autoencoders for Metasurface Design Optimization (invited)., 2020,,.		0
32	On-Chip Single-Layer Integration of Diamond Spins with Microwave and Plasmonic Channels. ACS Photonics, 2020, 7, 2018-2026.	3.2	9
33	Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light: Science and Applications, 2020, 9, 126.	7.7	56
34	Broadband Ultrafast Dynamics of Refractory Metals: TiN and ZrN. Advanced Optical Materials, 2020, 8, 2000652.	3.6	45
35	Chipâ€Compatible Quantum Plasmonic Launcher. Advanced Optical Materials, 2020, 8, 2000889.	3.6	8
36	Rapid Classification of Quantum Sources Enabled by Machine Learning. Advanced Quantum Technologies, 2020, 3, 2000067.	1.8	27

#	Article	IF	CITATIONS
37	Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 2020, 7, .	5.5	147
38	Plasmonic and phononic properties of epitaxial conductive transition metal nitrides. Journal of Optics (United Kingdom), 2020, 22, 084001.	1.0	20
39	Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science, 2020, 369, 423-426.	6.0	100
40	Transdimensional material platforms for tunable metasurface design. MRS Bulletin, 2020, 45, 188-195.	1.7	11
41	Broad Frequency Shift of Parametric Processes in Epsilon-Near-Zero Time-Varying Media. Applied Sciences (Switzerland), 2020, 10, 1318.	1.3	35
42	Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity. ACS Photonics, 2020, 7, 472-479.	3.2	11
43	Negative Refraction in Time-Varying Strongly Coupled Plasmonic-Antenna–Epsilon-Near-Zero Systems. Physical Review Letters, 2020, 124, 043902.	2.9	69
44	Dynamical Control of Broadband Coherent Absorption in ENZ Films. Micromachines, 2020, 11, 110.	1.4	9
45	TiN@TiO ₂ Core–Shell Nanoparticles as Plasmonâ€Enhanced Photosensitizers: The Role of Hot Electron Injection. Laser and Photonics Reviews, 2020, 14, 1900376.	4.4	39
46	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Letters, 2020, 20, 3663-3672.	4.5	49
47	Ten years of spasers and plasmonic nanolasers. Light: Science and Applications, 2020, 9, 90.	7.7	192
48	Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. Physical Review Research, 2020, 2, .	1.3	17
49	High-temperature, spectrally-selective, scalable, and flexible thin-film Si absorber and emitter. Optical Materials Express, 2020, 10, 208.	1.6	7
50	Hybrid magneto photonic material structure for plasmon assisted magnetic switching. Optical Materials Express, 2020, 10, 3107.	1.6	3
51	Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular beam epitaxy. Optical Materials Express, 2020, 10, 2679.	1.6	39
52	Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 2020, 7, 226.	4.8	76
53	Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas. Optica, 2020, 7, 463.	4.8	58
54	Machine learning–assisted global optimization of photonic devices. Nanophotonics, 2020, 10, 371-383.	2.9	74

#	Article	IF	Citations
55	Dynamically controlled random lasing with colloidal titanium carbide MXene. Optical Materials Express, 2020, 10, 2304.	1.6	1
56	Extraordinary Permittivity Modulation in Zinc Oxide for Ultrafast Dynamic Nanophotonics., 2020,,.		0
57	Broadband, High-Speed, and Extraordinarily Large All-Optical Switching with Yttrium-doped Cadmium Oxide. , 2020, , .		0
58	Plasmon-enhanced graphene photothermoelectric detector., 2020,,.		0
59	Metal-dielectric resonators for multimode, ultrafast all-optical switching in the NIR. , 2020, , .		0
60	Room-Temperature Lasing Action from All-dielectric Metasurfaces Near Bound States in the Continuum. , 2020, , .		2
61	Tuning Topology of Photonic Systems with Transparent Conducting Oxides. ACS Photonics, 2019, 6, 1922-1930.	3.2	13
62	Spatiotemporal light control with frequency-gradient metasurfaces. Science, 2019, 365, 374-377.	6.0	117
63	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002.	1.0	146
64	Strontium Niobate for Nearâ€Infrared Plasmonics. Advanced Optical Materials, 2019, 7, 1900401.	3.6	0
65	Colors with plasmonic nanostructures: A full-spectrum review. Applied Physics Reviews, 2019, 6, .	5.5	136
66	Optical Properties of MXenes. , 2019, , 327-346.		12
67	Highly Efficient Frequency Shifting from Temporally Modulated Epsilon-Near-Zero Surfaces. , 2019, , .		0
68	Transdimensional Photonics. ACS Photonics, 2019, 6, 1-3.	3.2	36
69	Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. Faraday Discussions, 2019, 214, 283-295.	1.6	20
70	Feature issue introduction: Beyond Thin Films: Photonics with Ultrathin and Atomically Thin Materials. Optical Materials Express, 2019, 9, 2427.	1.6	2
71	Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance. Nano Letters, 2019, 19, 3796-3803.	4.5	28
72	Overcoming quantum decoherence with plasmonics. Science, 2019, 364, 532-533.	6.0	84

#	Article	IF	CITATIONS
73	Spatiotemporal light control with active metasurfaces. Science, 2019, 364, .	6.0	581
74	Photonic topological phase transition on demand. Nanophotonics, 2019, 8, 1349-1356.	2.9	17
75	Plasmonâ€Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Advanced Materials, 2019, 31, e1805513.	11.1	159
76	Near-zero-index materials for photonics. Nature Reviews Materials, 2019, 4, 742-760.	23.3	234
77	Photonic Spin Hall Effect in Robust Phase Gradient Metasurfaces Utilizing Transition Metal Nitrides. ACS Photonics, 2019, 6, 99-106.	3.2	35
78	Exploring Timeâ€Resolved Multiphysics of Active Plasmonic Systems with Experimentâ€Based Gain Models. Laser and Photonics Reviews, 2019, 13, 1800071.	4.4	9
79	Achieving full-color generation with polarization-tunable perfect light absorption. Optical Materials Express, 2019, 9, 779.	1.6	35
80	Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films. Optical Materials Express, 2019, 9, 3911.	1.6	12
81	Hybrid Photonic-Plasmonic Waveguides with Ultrathin TiN. , 2019, , .		1
82	Strontium Niobate for Near Infrared Plasmonics. , 2019, , .		0
83	Artificial-intelligence-assisted photonics (Conference Presentation). , 2019, , .		2
84	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	1.0	240
85	Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556, 483-486.	13.7	312
86	Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media. Physical Review Letters, 2018, 120, 043902.	2.9	98
87	Engineered nonlinear materials using gold nanoantenna array. Scientific Reports, 2018, 8, 780.	1.6	11
88	Dynamic Control of Nanocavities with Tunable Metal Oxides. Nano Letters, 2018, 18, 740-746.	4. 5	48
89	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 2018, 5, 1115-1122.	3.2	252
90	Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection. ACS Photonics, 2018, 5, 692-698.	3.2	59

#	Article	IF	Citations
91	Emerging materials for tailorable nanophotonic devices. , 2018, , .		1
92	Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems. Physical Review Letters, 2018, 121, 253901.	2.9	252
93	Synchrotron radiation from an accelerating light pulse. Science, 2018, 362, 439-442.	6.0	29
94	On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films. ACS Photonics, 2018, 5, 4423-4431.	3.2	36
95	Material platforms for optical metasurfaces. Nanophotonics, 2018, 7, 959-987.	2.9	122
96	High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. ACS Nano, 2018, 12, 5376-5384.	7. 3	47
97	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Letters, 2018, 3, 1578-1583.	8.8	29
98	Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level. ACS Photonics, 2018, 5, 2816-2824.	3.2	74
99	Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. Nano Letters, 2018, 18, 4837-4844.	4.5	121
100	Accelerating light with metasurfaces. Optica, 2018, 5, 678.	4.8	30
101	Laser-Induced CO ₂ Generation from Gold Nanorod-Containing Poly(propylene) Tj ETQq1 1 0.784314 Materials & Discourse (propylene) Tj ETQq1 1 0.7843	rgBT /Ov 4.0	
102	Ultrathin and multicolour optical cavities with embedded metasurfaces. Nature Communications, 2018, 9, 2673.	5.8	97
103	Optical response of finite-thickness ultrathin plasmonic films. MRS Communications, 2018, 8, 1092-1097.	0.8	13
104	Quantum electrodynamics of optical metasurfaces. , 2018, , .		1
105	Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Optical Materials Express, 2018, 8, 3392.	1.6	42
106	Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. Optica, 2018, 5, 1557.	4.8	26
107	Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Advanced Optical Materials, 2017, 5, 1600717.	3.6	42
108	Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017, 4, 674-680.	3.2	49

#	Article	IF	Citations
109	Titanium nitride based hybrid plasmonic-photonic waveguides for on-chip plasmonic interconnects. , 2017, , .		1
110	Broadband Hotâ€Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Advanced Optical Materials, 2017, 5, 1601031.	3.6	248
111	Temperature-Dependent Optical Properties of Single Crystalline and Polycrystalline Silver Thin Films. ACS Photonics, 2017, 4, 1083-1091.	3.2	60
112	Plasmonics: Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide (Advanced Optical Materials 7/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
113	Pancharatnam–Berry Phase Manipulating Metasurface for Visible Color Hologram Based on Low Loss Silver Thin Film. Advanced Optical Materials, 2017, 5, 1700196.	3.6	58
114	Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. ACS Photonics, 2017, 4, 1413-1420.	3.2	143
115	Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers. Springer Series in Solid-state Sciences, 2017, , 97-120.	0.3	1
116	Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials, 2017, 5, 1700065.	3.6	95
117	Applying plasmonics to a sustainable future. Science, 2017, 356, 908-909.	6.0	85
118	High temperature efficient, stable Si wafer-based selective solar absorbers. Applied Physics Letters, 2017, 110, .	1.5	12
119	Patterning metamaterials for fast and efficient single-photon sources. , 2017, , .		0
120	Evolution of Metallicity in Vanadium Dioxide by Creation of Oxygen Vacancies. Physical Review Applied, 2017, 7, .	1.5	88
121	Highâ€Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. Advanced Materials, 2017, 29, 1605177.	11.1	90
122	Enhanced Graphene Photodetector with Fractal Metasurface. Nano Letters, 2017, 17, 57-62.	4.5	106
123	Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds. Physical Review B, 2017, 96, .	1.1	20
124	Solarâ€Energy Harvesting: Broadband Hotâ€Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride (Advanced Optical Materials 15/2017). Advanced Optical Materials, 2017, 5, .	3.6	2
125	Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser and Photonics Reviews, 2017, 11, 1700212.	4.4	63
126	Ultra-thin plasmonic metal nitrides: Tailoring optical properties to photonic applications. , 2017, , .		2

#	Article	IF	Citations
127	Optical Properties of Ultrathin Plasmonic TiN Films. , 2017, , .		3
128	Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Optics Express, 2017, 25, 12295.	1.7	25
129	Material platforms for integrated quantum photonics. Optical Materials Express, 2017, 7, 111.	1.6	109
130	Superconducting detector for visible and near-infrared quantum emitters [Invited]. Optical Materials Express, 2017, 7, 513.	1.6	17
131	Universal features of the optical properties of ultrathin plasmonic films. Optical Materials Express, 2017, 7, 3731.	1.6	35
132	Surface-plasmon opto-magnetic field enhancement for all-optical magnetization switching. Optical Materials Express, 2017, 7, 4316.	1.6	35
133	Deeply sub-wavelength coherent absorption in optically thick ENZ films. , 2017, , .		0
134	Patterned multilayer metamaterial for fast and efficient photon collection from dipolar emitters. Optics Letters, 2017, 42, 3968.	1.7	3
135	Active Metamaterials Based on Monolayer Titanium Carbide MXene for Random Lasing. , 2017, , .		4
136	Plasmonic Resonances in Nanostructured MXene: Highly Broadband Absorber., 2017,,.		2
137	Plasmonic Antenna Resonance Pinning and Suppression of Near-Field Coupling from Epsilon-Near-Zero Substrate., 2017,,.		2
138	Broadband hot electron generation for solar energy conversion with plasmonic titanium nitride. , 2017, , .		1
139	Dynamic nanophotonics [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 95.	0.9	30
140	Spin Contrast of Purcell-Enhanced Nitrogen-Vacancy Centers in Diamond. , 2017, , .		0
141	Massive Parallel Positioning of Nanodiamonds on Nanophotonic Structures. , 2017, , .		0
142	Temperature induced deviations to the optical responses of plasmonic materials., 2017,,.		0
143	Oxides and nitrides for nanophotonics and energy applications. , 2017, , .		0
144	Novel Hard Mask Fabrication Method for Hybrid Plasmonic Waveguide and Metasurfaces. , 2017, , .		О

#	Article	IF	Citations
145	Interband Effects on Hot Carrier Relaxation in Titanium Nitride Films. , 2017, , .		O
146	Surface-Plasmon Opto-Magnetic Field Enhancement for Magnetization Reversal of On-Chip Nanomagnets. , $2017, , .$		0
147	Hot Electron Relaxation in Thin Titanium Nitride Films. , 2016, , .		4
148	Photonic Time-Crystals and Momentum Band-Gaps. , 2016, , .		6
149	Implementation of Metasurface Based Nano-Cavities. , 2016, , .		1
150	Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. Applied Physics Letters, 2016, 108, .	1.5	15
151	Near-infrared plasmonics with transparent conducting oxides (Conference Presentation)., 2016,,.		0
152	Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. MRS Communications, 2016, 6, 17-22.	0.8	12
153	Refractory plasmonics (Conference Presentation)., 2016,,.		0
154	Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. Nano Letters, 2016, 16, 2471-2477.	4.5	66
155	Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics, 2016, 5, 112-133.	2.9	102
156	Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. ACS Nano, 2016, 10, 9326-9333.	7.3	56
157	Development of Optical Metasurfaces: Emerging Concepts and New Materials. Proceedings of the IEEE, 2016, 104, 2270-2287.	16.4	27
158	Roadmap on optical metamaterials. Journal of Optics (United Kingdom), 2016, 18, 093005.	1.0	118
159	Temperature-dependent optical properties of gold thin films. Optical Materials Express, 2016, 6, 2776.	1.6	141
160	Lasing boosted with plasmonic nanostructures. , 2016, , .		0
161	Enhanced Nonlinear Refractive Index in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ε</mml:mi></mml:math> -Near-Zero Materials. Physical Review Letters, 2016, 116, 233901.	2.9	348
162	Plasmonics—turning loss into gain. Science, 2016, 351, 334-335.	6.0	73

#	Article	IF	Citations
163	Evolution of photonic metasurfaces: from static to dynamic. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 501.	0.9	68
164	Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nature Nanotechnology, 2016, 11, 53-59.	15.6	231
165	Lasing Action in Gold Nanorod Hyperbolic Metamaterials. , 2016, , .		4
166	Plasmonic Interconnects Using Zirconium Nitride. , 2016, , .		5
167	High efficiency phase gradient metasurface using refractory plasmonic Zirconium Nitride. , 2016, , .		2
168	Effective Third-Order Nonlinearities in Refractory Plasmonic TiN Thin Films. , 2016, , .		1
169	Ultrafast Optical Tuning of Epsilon-Near-Zero Thin Films. , 2016, , .		0
170	Transient Nonlinear Refraction Measurements of Titanium Nitride Thin Films. , 2016, , .		1
171	Optical properties of gold thin films at elevated temperatures. , 2016, , .		0
172	Controlled Rapid Delivery and On-Chip Trapping of Nanoparticles by a Hybrid Electrothermoplasmonic Nanotweezer. , 2016, , .		0
173	On-demand rapid transport and stable trapping of nanoparticles of nanoparticles by a hybrid electrothermoplasmonic nanotweezer (Conference Presentation). , 2016, , .		0
174	Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. Nanophotonics, 2015, 4, 269-276.	2.9	100
175	Time-varying metasurfaces and Lorentz non-reciprocity. Optical Materials Express, 2015, 5, 2459.	1.6	258
176	Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Optical Materials Express, 2015, 5, 2682.	1.6	20
177	A practical platform for integrated optics with nitrides and oxides. , 2015, , .		0
178	Plasmon resonance in multilayer graphene nanoribbons. Laser and Photonics Reviews, 2015, 9, 650-655.	4.4	39
179	Plasmon-Assisted Optoelectrofluidics. , 2015, , .		1
180	Effective third-order nonlinearities in metallic refractory titanium nitride thin films: publisher's note. Optical Materials Express, 2015, 5, 2587.	1.6	2

#	Article	IF	CITATIONS
181	All that glitters need not be gold. Science, 2015, 347, 1308-1310.	6.0	66
182	Merging metamaterials with quantum photonics. , 2015, , .		1
183	Electrothermoplasmonic flow for plasmon-assisted optical trapping (Presentation Recording). , 2015, , .		O
184	Enhancement of Single-Photon Sources with Metamaterials. , 2015, , 123-148.		2
185	Time-resolved lasing dynamics for plasmonic system with gain (Presentation Recording). , 2015, , .		O
186	Quasi-coherent thermal emitter based on refractory plasmonic materials. Optical Materials Express, 2015, 5, 2721.	1.6	64
187	Enhancement of single‑photon emission from nitrogen‑vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser and Photonics Reviews, 2015, 9, 120-127.	4.4	93
188	Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 2015, 18, 227-237.	8.3	318
189	Dual-Band Metasurface Based Nano-Cavities. , 2015, , .		O
190	Broadband High-Efficiency Half-Wave Plate Using Plasmonic Metasurface., 2015,,.		0
191	Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano, 2015, 9, 4111-4119.	7.3	387
192	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	1.6	16
193	Gyroidal titanium nitride as nonmetallic metamaterial. Optical Materials Express, 2015, 5, 1316.	1.6	25
194	Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica, 2015, 2, 860.	4.8	141
195	Plasmonic Random Lasing in Strongly Scattering Regime with Slanted Silver Nanorod Array. , 2015, , .		0
196	Effect of photonic density of states on spin-flip induced fluorescence contrast in diamond nitrogen-vacancy center ensembles (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
197	Transparent conducting oxides as plasmonic component in near infrared (Presentation Recording)., 2015,,.		0

Nitrogen-vacancy single-photon emission enhanced with nanophotonic structures (Presentation) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
199	Plasmon Resonance in Single- and Double-layer CVD Graphene Nanoribbons. , 2015, , .		O
200	Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance. Nanophotonics, 2015, 4, 214-223.	2.9	67
201	Time-Domain Model of 4-Level Gain System Fitted to Nanohole Array Lasing Experiment. , 2015, , .		0
202	Color Hologram Generation Using a Pancharatnam-Berry Phase Manipulating Metasurface. , 2015, , .		1
203	Ultrafast dynamics of Al-doped zinc oxide under optical excitation (Presentation Recording). , 2015, , .		0
204	Alternative materials lead to practical nanophotonic components (Presentation Recording). Proceedings of SPIE, $2015, \ldots$	0.8	0
205	Effect of a hyperbolic metamaterial on radiation patterns of a single-photon source., 2015,,.		0
206	Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2015, 2, 616.	4.8	280
207	Effective third-order nonlinearities in metallic refractory titanium nitride thin films. Optical Materials Express, 2015, 5, 2395.	1.6	50
208	Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 121.	0.9	111
209	Adiabatically Tapered Hyperbolic Metamaterials for Dispersion Control of High- k Waves. Nano Letters, 2015, 15, 498-505.	4.5	26
210	Plasmonics on the slope of enlightenment: the role of transition metal nitrides. Faraday Discussions, 2015, 178, 71-86.	1.6	92
211	Dispersion Control of High-k Waves in Tapered Hyperbolic Waveguides. , 2015, , .		O
212	Studying the Interplay of Electric and Magnetic Resonance-Enhanced Second Harmonic Generation: Theory and Experiments. , 2015 , , .		0
213	Enhanced Multi-Photon Emission from Single NV Center Coupled to Graphene by Laser-Shaping. , 2015, ,		0
214	Quantifying the local density of optical states of nanorods by fluorescence lifetime imaging. New Journal of Physics, 2014, 16, 063069.	1.2	8
215	Plasmonic hybrid nanostructure with controlled interaction strength. , 2014, , .		0
216	Compact Subwavelength Cavities Using Reflecting Metasurfaces. , 2014, , .		0

#	Article	IF	CITATIONS
217	Highly-directional plasmonic lasing in the visible with subwavelength hole arrays., 2014,,.		О
218	Titanium Nitride as a Refractory Plasmonic Material for High Temperature Applications. , 2014, , .		1
219	CMOS Compatible Ultra-Compact Modulator. , 2014, , .		1
220	Unidirectional Surface Plasmon Polariton Coupler in the Visible Using Metasurfaces. , 2014, , .		0
221	Low-Loss Plasmonic Titanium Nitride Strip Waveguides. , 2014, , .		0
222	All-Dielectric Metasurface Focusing Lens. , 2014, , .		0
223	Optical absorption of hyperbolic metamaterial with stochastic surfaces. Optics Express, 2014, 22, 8893.	1.7	17
224	Experimental demonstration of titanium nitride plasmonic interconnects. Optics Express, 2014, 22, 12238.	1.7	76
225	Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 2014, 26, 7959-7965.	11.1	603
226	Plasmonic modulator using CMOS-compatible material platform., 2014,,.		2
227	High-temperature plasmonic thermal emitter for thermo-photovotaics. , 2014, , .		1
227	High-temperature plasmonic thermal emitter for thermo-photovotaics. , 2014, , . Titanium nitride nanoparticles for therapeutic applications. , 2014, , .		0
		1.7	
228	Titanium nitride nanoparticles for therapeutic applications. , 2014, , .	1.7 0.8	0
228	Titanium nitride nanoparticles for therapeutic applications. , 2014, , . All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22, 26212. Quantifying local density of optical states of nanorods by fluorescence lifetime imaging. Proceedings		0 251
228 229 230	Titanium nitride nanoparticles for therapeutic applications. , 2014, , . All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22, 26212. Quantifying local density of optical states of nanorods by fluorescence lifetime imaging. Proceedings of SPIE, 2014, , .	0.8	0 251 0
228 229 230 231	Titanium nitride nanoparticles for therapeutic applications. , 2014, , . All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22, 26212. Quantifying local density of optical states of nanorods by fluorescence lifetime imaging. Proceedings of SPIE, 2014, , . Refractory Plasmonics. Science, 2014, 344, 263-264. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2014,	0.8 6.0	0 251 0 337

#	Article	IF	CITATIONS
235	TiN/(Al,Sc)N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range. Physical Review B, 2014, 90, .	1.1	52
236	Optically Active Metasurface with Non-Chiral Plasmonic Nanoantennas. Nano Letters, 2014, 14, 4426-4431.	4.5	108
237	Efficient Light Bending with Isotropic Metamaterial Huygens' Surfaces. Nano Letters, 2014, 14, 2491-2497.	4. 5	310
238	Highly directional spaser array for the red wavelength region. Laser and Photonics Reviews, 2014, 8, 896-903.	4.4	69
239	Experimental Huygens' Surface for NIR Wavelengths. , 2014, , .		0
240	Wavelength-Tunable Spasing in the Visible. Nano Letters, 2013, 13, 4106-4112.	4.5	166
241	Alternative Plasmonic Materials: Alternative Plasmonic Materials: Beyond Gold and Silver (Adv. Mater.) Tj ETQq1	1 0.78431 11.1	4 rgBT /Over
242	Planar Photonics with Metasurfaces. Science, 2013, 339, 1232009.	6.0	2,352
243	Metasurface holograms for visible light. Nature Communications, 2013, 4, .	5.8	1,167
244	Optical Properties of Gallium-Doped Zinc Oxideâ€"A Low-Loss Plasmonic Material: First-Principles Theory and Experiment. Physical Review X, 2013, 3, .	2.8	53
245	Experimental validation of a new bianisotropic parameter retrieval technique using plasmonic metasurfaces made of V-shape antennas. , 2013, , .		4
246	Volume plasmon polaritons and subwavelength interference in a hyperbolic medium., 2013,,.		0
247	Time-domain modeling of silver nanowires-graphene transparent conducting electrodes. Proceedings of SPIE, 2013, , .	0.8	5
248	Planar Meta-Optics., 2013,,.		0
249	A Titanium Nitride based Metamaterial for Applications in the Visible. , $2013, \ldots$		0
250	Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity. Scientific Reports, 2013, 3, 1241.	1.6	55
251	Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science and Applications, 2013, 2, e72-e72.	7.7	576
252	Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Applied Physics Letters, 2013, 102, 173114.	1.5	68

#	Article	IF	CITATIONS
253	Subâ€wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser and Photonics Reviews, 2013, 7, 265-271.	4.4	144
254	Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials, 2013, 25, 3264-3294.	11.1	1,786
255	Holey-Metal Lenses: Sieving Single Modes with Proper Phases. Nano Letters, 2013, 13, 159-163.	4.5	84
256	Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Letters, 2013, 13, 6078-6083.	4.5	253
257	Homogenization of bi-anisotropic metasurfaces. Optics Express, 2013, 21, 21941.	1.7	23
258	Local heating with titanium nitride nanoparticles. , 2013, , .		2
259	Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Optics Express, 2013, 21, 27326.	1.7	125
260	Diffractive optics with nanoslits. , 2013, , .		0
261	Unidirectional lasing with symmetry broken core-shell nanoparticle. , 2013, , .		0
262	Plasmonic Metasurface Based Ultra-thin Phase Holograms and Planar Micro-lenses. , 2013, , .		1
263	Holey metallic lens for light focusing. , 2013, , .		0
264	Broadband Optical Chirality Using Ultrathin Metasurface. , 2013, , .		0
265	Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials., 2013,,.		0
266	All-semiconductor metamaterial with negative refraction in the near-infrared. , 2012, , .		0
267	Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Optics Express, 2012, 20, 8100.	1.7	152
268	Designing a nanoantenna-superlens system for sensing applications., 2012,,.		0
269	Double-Slit Diffraction Experiment in Hyperbolic Media., 2012,,.		0
270	Broadband Extinction of Core-Shell Microspheres. , 2012, , .		0

#	Article	IF	CITATIONS
271	Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8834-8838.	3.3	304
272	Broadband Light Bending with Plasmonic Nanoantennas. Science, 2012, 335, 427-427.	6.0	1,291
273	Near field enhancement in silver nanoantenna-superlens systems. Applied Physics Letters, 2012, 101, 021109.	1.5	11
274	Coupling effect in a near-field object–superlens system. Applied Physics A: Materials Science and Processing, 2012, 107, 83-88.	1.1	8
275	Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Applied Physics B: Lasers and Optics, 2012, 107, 285-291.	1.1	132
276	Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement. Applied Physics B: Lasers and Optics, 2012, 106, 577-581.	1.1	8
277	Gain-Assisted Hyperbolic Metamaterials. , 2012, , .		О
278	Symmetry-Breaking Plasmonic Metasurfaces for Broadband Light Bending., 2012,,.		0
279	Plasmonics Goes Quantum. Science, 2011, 334, 463-464.	6.0	160
280	TUNABLE AND ACTIVE OPTICAL NEGATIVE INDEX METAMATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2011, , 255-284.	0.1	0
281	Transformation optics. Journal of Optics (United Kingdom), 2011, 13, 020201-020201.	1.0	5
281	Transformation optics. Journal of Optics (United Kingdom), 2011, 13, 020201-020201. Loss-compensated and active hyperbolic metamaterials. Optics Express, 2011, 19, 25242.	1.0	126
282	Loss-compensated and active hyperbolic metamaterials. Optics Express, 2011, 19, 25242.	1.7	126
282	Loss-compensated and active hyperbolic metamaterials. Optics Express, 2011, 19, 25242. Metal nanoslit lenses with polarization-selective design. Optics Letters, 2011, 36, 451.	1.7	126 78
282 283 284	Loss-compensated and active hyperbolic metamaterials. Optics Express, 2011, 19, 25242. Metal nanoslit lenses with polarization-selective design. Optics Letters, 2011, 36, 451. Metal nanoslit lenses with polarization-selective design: erratum. Optics Letters, 2011, 36, 1244.	1.7	126 78 3
282 283 284 285	Loss-compensated and active hyperbolic metamaterials. Optics Express, 2011, 19, 25242. Metal nanoslit lenses with polarization-selective design. Optics Letters, 2011, 36, 451. Metal nanoslit lenses with polarization-selective design: erratum. Optics Letters, 2011, 36, 1244. Gold Nanoslit Lenses., 2011,,	1.7 1.7 1.7	126 78 3

#	Article	IF	CITATIONS
289	Bianisotropic Effective Parameters of Optical Metamagnetics and Negative-Index Materials. Proceedings of the IEEE, 2011, 99, 1691-1700.	16.4	25
290	Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions. Applied Physics B: Lasers and Optics, 2011, 103, 553-558.	1.1	63
291	Characterization of nanodiamonds for metamaterial applications. Applied Physics B: Lasers and Optics, 2011, 105, 191-195.	1.1	15
292	Nonlinear and active metamaterials. Proceedings of SPIE, 2011, , .	0.8	3
293	Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens. , 2011, , .		1
294	Transformation optics and metamaterials. Physics-Uspekhi, 2011, 54, 53-63.	0.8	76
295	Effect of Metallic and Hyperbolic Metamaterial Surface on Electric and Magnetic Dipole Emission. , 2011, , .		0
296	The Case for Plasmonics. Science, 2010, 328, 440-441.	6.0	524
297	Optical Metamaterials: Invisibility in Visible and Nonlinearities in Reverse. Springer Series in Optical Sciences, 2010, , 217-240.	0.5	1
298	FDTD modeling of realistic semicontinuous metal films. Applied Physics B: Lasers and Optics, 2010, 100, 159-168.	1.1	47
299	Toward superlensing with metal–dielectric composites andÂmultilayers. Applied Physics B: Lasers and Optics, 2010, 100, 93-100.	1.1	37
300	Engineering photonic density of states using metamaterials. Applied Physics B: Lasers and Optics, 2010, 100, 215-218.	1.1	392
301	Introduction to the Special Issue on Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 363-366.	1.9	1
302	Searching for better plasmonic materials. Laser and Photonics Reviews, 2010, 4, 795-808.	4.4	1,700
303	Coherent nonlinear-optical energy transfer and backward-wave optical parametric generation in negative-index metamaterials. Physica B: Condensed Matter, 2010, 405, 2999-3002.	1.3	9
304	Loss-free and active optical negative-index metamaterials. Nature, 2010, 466, 735-738.	13.7	729
305	Semiconductor plasmonic metamaterials for near-infrared and telecommunication wavelength. , 2010, , .		5
306	Maxwell fisheye and Eaton lenses emulated by a microdroplet. , 2010, , .		1

#	Article	lF	CITATIONS
307	Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing. Applied Physics Letters, 2010, 97, .	1.5	49
308	Broadband Transformation Optics Devices. Materials, 2010, 3, 4793-4810.	1.3	7
309	Two-photon Absorption Enhancement with Gold Nanoantenna Array. , 2010, , .		0
310	Analyzing the effect of a metamaterial surface on electric and magnetic dipole emissions using Green's function and spatial harmonic analysis techniques., 2010,,.		1
311	Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Optics Express, 2010, 18, 5124.	1.7	237
312	Random lasing in bone tissue. Optics Letters, 2010, 35, 1425.	1.7	163
313	Random laser spectroscopy for nanoscale perturbation sensing. Optics Letters, 2010, 35, 2624.	1.7	56
314	Maxwell fish-eye and Eaton lenses emulated by microdroplets. Optics Letters, 2010, 35, 3396.	1.7	52
315	Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2465.	0.9	14
316	Experimental observation of the trapped rainbow. Applied Physics Letters, 2010, 96, 211121.	1.5	59
317	Optical Metamaterials., 2010,,.		619
318	Drude Relaxation Rate in Grained Gold Nanoantennas. Nano Letters, 2010, 10, 916-922.	4.5	176
319	Bi-Anisotropy of Optical Metamagnetics Studied with Spectroscopic Ellipsometry. , 2010, , .		0
320	Ultra-Thin Ultra-Smooth and Low-Loss Silver and Silver-Silica Composite Films for Superlensing Applications. , 2010, , .		0
321	Improving Plasmonic Nanoantennas. , 2010, , .		0
322	Radiative Decay Engineering with Hyperbolic Metamaterials. , 2010, , .		0
323	SHA Modeling of Gold Gratings for Oblique Light Incidence. , 2010, , .		0
324	Translation of Nanoantenna Field Enhancement by a Metal-Dielectric Composite Superlens., 2009,,.		0

#	Article	IF	Citations
325	Translation of nanoantenna hot spots by a metal-dielectric composite superlens. Applied Physics Letters, 2009, 95, 033114.	1.5	23
326	Coherent nonlinear optics and quantum control in negative-index metamaterials. Journal of Optics, 2009, 11, 114028.	1.5	13
327	Inhomogeneous and Guided-Wave Metamaterials: Linear and Nonlinear Optics., 2009,,.		0
328	Emulating Metamaterial Anisotropy by Tapered Waveguides., 2009,,.		0
329	Resonant nonlinear optics of backward waves in negative-index metamaterials. Applied Physics B: Lasers and Optics, 2009, 96, 315-323.	1.1	12
330	Demonstration of a spaser-based nanolaser. Nature, 2009, 460, 1110-1112.	13.7	1,925
331	Loss as a route to transparency. Nature Photonics, 2009, 3, 75-75.	15.6	35
332	Anisotropic Metamaterials Emulated by Tapered Waveguides: Application to Optical Cloaking. Physical Review Letters, 2009, 102, 213901.	2.9	181
333	Tunable magnetic response of metamaterials. Applied Physics Letters, 2009, 95, 033115.	1.5	154
334	Microscopic mirrorless negative-index optical parametric oscillator. Optics Letters, 2009, 34, 1165.	1.7	28
335	Frequency-domain modeling of TM wave propagation in optical nanostructures with a third-order nonlinear response. Optics Letters, 2009, 34, 3364.	1.7	9
336	Yellow-light negative-index metamaterials. Optics Letters, 2009, 34, 3478.	1.7	146
337	Metamaterials: transforming theory into reality. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B161.	0.9	33
338	Simplified model for periodic nanoantennae: linear model and inverse design. Optics Express, 2009, 17, 11607.	1.7	13
339	Frequency-domain simulations of a negative-index material with embedded gain. Optics Express, 2009, 17, 24060.	1.7	67
340	Materializing a binary hyperlens design. Applied Physics Letters, 2009, 94, .	1.5	26
341	Plasmonics: nonlinear optics, negative phase, and transformable transparency. , 2009, , .		5
342	Fabricating plasmonic components for nanophotonics. , 2009, , .		0

#	Article	IF	CITATIONS
343	Negative Index Metamaterials for Visible Wavelengths. , 2009, , .		O
344	A Tool for Designing Realizable Hyperlenses. , 2009, , .		1
345	Progress in Metamaterials for Optical Devices. , 2009, , .		0
346	Fabricating Plasmonic Components for Nano- and Meta-Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 209-221.	0.2	1
347	Plasmonic nanoantenna arrays for the visible. Metamaterials, 2008, 2, 45-51.	2.2	131
348	Mid-IR plasmonics and photomodification with Ag films. Applied Physics B: Lasers and Optics, 2008, 93, 59-68.	1.1	37
349	Imaging contrast under aperture tip–nanoantenna array interaction. Applied Physics B: Lasers and Optics, 2008, 93, 189-198.	1.1	7
350	Photonic metamaterials. Laser Physics Letters, 2008, 5, 411-420.	0.6	46
351	Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials, 2008, 2, 1-17.	2.2	263
352	Enhanced localized fluorescence in plasmonic nanoantennae. Applied Physics Letters, 2008, 92, .	1.5	178
353	Chapter 1 Negative refractive index metamaterials in optics. Progress in Optics, 2008, 51, 1-67.	0.4	29
354	Gold Nanorod Arrays as Plasmonic Cavity Resonators. ACS Nano, 2008, 2, 2569-2576.	7.3	138
355	Transformation optics: approaching broadband electromagnetic cloaking. New Journal of Physics, 2008, 10, 115029.	1.2	61
356	Engineering space for light via transformation optics. Optics Letters, 2008, 33, 43.	1.7	168
357	Metamaterials: electromagnetic enhancement at zero-index transition. Optics Letters, 2008, 33, 2350.	1.7	101
358	The Ag dielectric function in plasmonic metamaterials. Optics Express, 2008, 16, 1186.	1.7	254
359	Designs for optical cloaking with high-order transformations. Optics Express, 2008, 16, 5444.	1.7	168
360	Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. Optics Express, 2008, 16, 11822.	1.7	87

#	Article	IF	Citations
361	Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. New Journal of Physics, 2008, 10, 125022.	1.2	112
362	Transforming Light. Science, 2008, 322, 384-386.	6.0	249
363	Optical chiral negative-index metamaterial design. , 2008, , .		0
364	Optical Metamagnetism and Negative-Index Metamaterials. MRS Bulletin, 2008, 33, 921-926.	1.7	34
365	Mirrorless optical parametric oscillations in negative-index microstructures. , 2008, , .		0
366	Liquid crystal clad metamaterial with a tunable negative-zero-positive index of refraction. , 2007, , .		0
367	Negative meta-magnetism in the visible range. , 2007, , .		0
368	Negative index metamaterial for two distinct polarizations: Double negative at 813 nm and single negative at 770 nm., 2007, , .		1
369	Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Applied Physics Letters, 2007, 91, .	1.5	125
370	Design of non-magnetic optical cloak. , 2007, , .		0
371	Dual-band negative-index metamaterials in the near-infrared frequency range. , 2007, , .		0
372	Negative Index Metamaterial for Two Distinct Polarizations: Double Negative at 813 nm and Single Negative at 770 nm. , 2007, , .		0
373	Collective electronic states in inhomogeneous media at critical and subcritical metal concentrations. Physical Review B, 2007, 75, .	1.1	2
374	Nature-based optimization of 2d negative-index metamaterials. , 2007, , .		1
375	Effect of an optical negative index thin film on optical bistability. Optics Letters, 2007, 32, 151.	1.7	60
376	Comment on "Negative refractive index in artificial metamaterials". Optics Letters, 2007, 32, 1510.	1.7	9
377	Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Optics Letters, 2007, 32, 1671.	1.7	188
378	Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials. Optics Letters, 2007, 32, 3044.	1.7	47

#	Article	IF	Citations
379	Stochastic optimization of low-loss optical negative-index metamaterial. Journal of the Optical Society of America B: Optical Physics, 2007, 24, A34.	0.9	27
380	A negative permeability material at red light. Optics Express, 2007, 15, 1076.	1.7	192
381	Near-infrared metamaterials with dual-band negative-index characteristics. Optics Express, 2007, 15, 1647.	1.7	64
382	Metamagnetics with rainbow colors. Optics Express, 2007, 15, 3333.	1.7	265
383	Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Optics Express, 2007, 15, 3342.	1.7	166
384	Near-field excitation of nanoantenna resonance. Optics Express, 2007, 15, 13682.	1.7	72
385	Compensating losses in positive- and negative-index metamaterials through nonlinear-optical quantum switching. , 2007, , .		2
386	Fabrication of Metamagnetics for Visible Wavelengths. , 2007, , .		0
387	Near-field, broadband optical spectroscopy of metamaterials. Physica B: Condensed Matter, 2007, 394, 137-140.	1.3	15
388	Beyond diffraction. Nature, 2007, 447, 266-267.	13.7	42
389	Optical negative-index metamaterials. Nature Photonics, 2007, 1, 41-48.	15.6	2,568
390	Optical cloaking with metamaterials. Nature Photonics, 2007, 1, 224-227.	15.6	1,887
391	Nonmagnetic cloak with minimized scattering. Applied Physics Letters, 2007, 91, .	1.5	272
392	Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate. Physical Review B, 2006, 74, .	1.1	44
393	Negative-Index Metamaterials: Going Optical. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1106-1115.	1.9	117
394	Compensating losses in negative-index metamaterials by optical parametric amplification. Optics Letters, 2006, 31, 2169.	1.7	218
395	Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Optics Letters, 2006, 31, 3022.	1.7	221
396	Focus Issue on Metamaterials. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 386.	0.9	16

#	Article	IF	Citations
397	Negative refractive index in optics of metal-dielectric composites. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 423.	0.9	149
398	Double-resonant optical materials with embedded metal nanostructures. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 535.	0.9	35
399	Negative index metamaterial combining magnetic resonators with metal films. Optics Express, 2006, 14, 7872.	1.7	104
400	Magnetic plasmon resonance. Physical Review E, 2006, 73, 036609.	0.8	98
401	Biomolecule Sensing with Adaptive Plasmonic Nanostructures. , 2006, , 351-366.		9
402	Experimental verification of an optical negative-index material. Laser Physics Letters, 2006, 3, 49-55.	0.6	110
403	Second harmonic generation in left-handed metamaterials. Laser Physics Letters, 2006, 3, 293-297.	0.6	75
404	Extraordinary localization of collective electronic states in random media., 2006, 6320, 175.		0
405	Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films. Physical Review Letters, 2006, 97, 206103.	2.9	80
406	Saturation effect in the optical response of Ag-nanoparticle fractal aggregates. Physical Review B, 2006, 73, .	1.1	15
407	Optical Negative-Index Metamaterials: from low to no-loss and from linear to nonlinear optics. , 2006, , .		0
408	Near-field intensity statistics in semicontinuous metal - dielectric films. , 2006, , .		0
409	From low-loss to lossless optical negative-index materials. , 2006, , .		2
410	Adaptive silver films toward bio-array applications. , 2005, , .		0
411	Superlens based on metal-dielectric composites. Physical Review B, 2005, 72, .	1.1	143
412	Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates. Journal of Optics, 2005, 7, S219-S229.	1.5	50
413	Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. Journal of Raman Spectroscopy, 2005, 36, 648-656.	1.2	60
414	Light diffraction by a subwavelength circular aperture. Laser Physics Letters, 2005, 2, 351-355.	0.6	15

#	Article	lF	CITATIONS
415	Nanostructures + Light = â€~New Optics'. Journal of Optics, 2005, 7, S1-S1.	1.5	4
416	Near-Field Intensity Correlations in Semicontinuous Metal-Dielectric Films. Physical Review Letters, 2005, 94, 226101.	2.9	52
417	Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films. Physical Review B, 2005, 72, .	1.1	35
418	Plasmonic Nanowire Metamaterials. , 2005, , 313-337.		3
419	Adaptive Silver Films for Detection of Antibodyâ° Antigen Binding. Langmuir, 2005, 21, 8368-8373.	1.6	55
420	Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30, 3356.	1.7	1,536
421	Effect of Ag aggregate on spectroscopic properties of Eu: Y2O3 nanoparticles. Journal of Modern Optics, 2005, 52, 2331-2341.	0.6	15
422	Resonant light interaction with plasmonic nanowire systems. Journal of Optics, 2005, 7, S32-S37.	1.5	97
423	Quantum size effect in two-photon excited luminescence from silver nanoparticles. Physical Review B, 2004, 69, .	1.1	36
424	Magnetic resonance in metal nanoantennas. , 2004, 5508, 128.		15
425	Size Dependent χ(3) for Conduction Electrons in Ag Nanoparticles. Nano Letters, 2004, 4, 1535-1539.	4.5	91
426	Resonant Field Enhancements from Metal Nanoparticle Arrays. Nano Letters, 2004, 4, 153-158.	4. 5	374
427	Enhanced transmission in near-field imaging of layered plasmonic structures. Optics Express, 2004, 12, 3701.	1.7	21
428	Surface-Enhanced Raman Difference between Human Insulin and Insulin Lispro Detected with Adaptive Nanostructures. Journal of Physical Chemistry B, 2004, 108, 18046-18052.	1.2	101
429	Localization-delocalization transition in metal-dielectric films. , 2004, , .		0
430	Adaptive SERS substrates for protein sensing. , 2004, , .		1
431	Growth, morphology, and optical and electrical properties of semicontinuous metallic films. Physical Review B, 2003, 67, .	1.1	104
432	Local field distribution in random metal–dielectric films; theory and experiment. Physica B: Condensed Matter, 2003, 338, 228-231.	1.3	3

#	Article	IF	Citations
433	Resonant transmittance through metal films with fabricated and light-induced modulation. Physical Review B, 2003, 67, .	1.1	64
434	Plasmon modes and negative refraction in metal nanowire composites. Optics Express, 2003, 11, 735.	1.7	251
435	Plasmon localization and local field distribution in metal-dielectric films. Physical Review E, 2003, 67, 056611.	0.8	36
436	METAL-DIELECTRIC COMPOSITE FILTERS WITH CONTROLLED SPECTRAL WINDOWS OF TRANSPARENCY. Journal of Nonlinear Optical Physics and Materials, 2003, 12, 419-440.	1.1	28
437	Optical properties of metal nanowires., 2003,,.		5
438	Semicontinuous silver films for protein sensing with SERS. , 2003, 5221, 76.		10
439	Periodical arrays of optical nano-antennas (Critical Review Lecture). , 2003, 5218, 81.		4
440	Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits., 2003, , .		12
441	<title>Plasmonic nanophotonics: manipulating light and sensing molecules</title> ., 2002, , .		0
442	Metal coverage dependence of local optical properties of semicontinuous metallic films. Journal of Modern Optics, 2002, 49, 2423-2435.	0.6	8
443	Discrete spectrum of anti-Stokes emission from metal particle-adsorbate complexes in a microcavity. , 2002, , .		2
444	<title>Light management at nanoscale</title> ., 2002, , .		0
445	Giant enhancement of spectral emissions from molecules adsorbed on fractal/microcavity composite media., 2002,,.		0
446	Optical Nonlinearities of Fractal Composites. , 2002, , 93-114.		24
447	Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity. Journal of Modern Optics, 2002, 49, 645-662.	0.6	22
448	PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS. Journal of Nonlinear Optical Physics and Materials, 2002, 11, 65-74.	1.1	211
449	Fractals in Microcavities: Giant Coupled, Multiplicative Enhancement of Optical Responses. AIP Conference Proceedings, 2002, , .	0.3	1
450	Percolation Composites: Localization of Surface Plasmons and Enhanced Optical Nonlinearities., 2001,, 567-575.		0

#	Article	IF	CITATIONS
451	Near-field optical studies of semicontinuous metal films. Physical Review B, 2001, 64, .	1.1	78
452	Localized plasmon-enhanced optical response: harmonic generation and polarization effects. , 2001, 4467, 288.		0
453	Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1112.	0.8	13
454	Near-field optical study of selective photomodification of fractal aggregates. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 698.	0.9	18
455	Large local optical activity in fractal aggregates of nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1896.	0.9	53
456	Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films. Physical Review B, $2001, 64, .$	1.1	54
457	Fractal nano-composites: Giant local-field enhancement of optical responses. AIP Conference Proceedings, 2001, , .	0.3	4
458	Plasmon-enhanced absorption by optical phonons in cermets. , 2001, , .		0
459	Local fields and optical properties of metal-dielectric films. , 2001, , .		0
460	Plasmon-enhanced absorption by optical phonons in metal-dielectric composites. Europhysics Letters, 2001, 53, 364-370.	0.7	18
461	Direct observation of locally enhanced electromagnetic field. Physica B: Condensed Matter, 2000, 279, 52-55.	1.3	28
462	Anderson localization of surface plasmons and Kerr nonlinearity in semicontinuous metal films. Physica B: Condensed Matter, 2000, 279, 87-89.	1.3	9
463	Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Physics Reports, 2000, 335, 275-371.	10.3	286
464	PERCOLATION AND FRACTAL COMPOSITES: OPTICAL STUDIES. Journal of Nonlinear Optical Physics and Materials, 2000, 09, 105-116.	1.1	27
465	Local electric and magnetic fields in semicontinuous metal films: Beyond the quasistatic approximation. Physical Review B, 2000, 62, 11230-11244.	1.1	38
466	Electrodynamics of metal-dielectric composites and electromagnetic crystals. Physical Review B, 2000, 62, 8531-8539.	1.1	57
467	Nonlinear Optics of Random Media. Springer Tracts in Modern Physics, 2000, , .	0.1	214
468	<title>Study of local photomodification of nanomaterials using near-field optics</title> ., 1999,,.		1

#	Article	IF	CITATIONS
469	OPTICAL NONLINEARITIES OF METAL-DIELECTRIC COMPOSITES. Journal of Nonlinear Optical Physics and Materials, 1999, 08, 191-210.	1.1	30
470	Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Physical Review B, 1999, 59, 10903-10909.	1.1	278
471	Percolation-enhanced nonlinear scattering from metal-dielectric composites. Physical Review E, 1999, 59, 7239-7242.	0.8	17
472	Elimination of Doppler broadening at coherently driven quantum transitions. Physical Review A, 1999, 59, R946-R949.	1.0	8
473	Toward a universal extinction spectrum of self-affine silver colloid clusters: Experiment and simulation. Journal of Chemical Physics, 1999, 110, 8080-8083.	1.2	8
474	Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal silver aggregates on a plain substrate. Physical Review B, 1999, 60, 10739-10742.	1,1	11
475	Absorption of light by soot particles in micro-droplets of water. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63, 321-339.	1.1	19
476	Giant high-order field moments in metal–dielectric composites. Physica A: Statistical Mechanics and Its Applications, 1999, 266, 115-122.	1.2	15
477	Near-field optical studies of local photomodification in nanostructured materials. Journal of Microscopy, 1999, 194, 574-577.	0.8	8
478	Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites. Physical Review B, 1999, 60, 16389-16408.	1,1	94
479	Fractals in Microcavities: Giant Coupled, Multiplicative Enhancement of Optical Responses. Physical Review Letters, 1999, 82, 4811-4814.	2.9	126
480	Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films. Physical Review Letters, 1999, 82, 4520-4523.	2.9	338
481	<title>Nondegenerate four-wave mixing in gold nanocomposites formed by ion implantation</title> ., 1999,,.		0
482	<title>Scanning near-field optical microscopy: local probes and enhanced electromagnetic fields</title> ., 1999, 3749, 494.		0
483	<title>Sub-Doppler resonances of absorption and transparency induced by strong radiations in ladder systems</title> ., 1999,,.		1
484	COMPUTATIONAL APPROACHES IN OPTICS OF FRACTAL CLUSTERS. , 1999, , 210-243.		1
485	Giant Stokes fields on semicontinuous metal films. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 68.	0.9	44
486	Nonlinear optics of random metal-dielectric films. Physical Review B, 1998, 57, 13265-13288.	1.1	227

#	Article	IF	Citations
487	Nonlinear optical phenomena on rough surfaces of metal thin films. Physical Review B, 1998, 57, 14901-14913.	1.1	34
488	Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles. Physical Review Letters, 1998, 80, 1102-1105.	2.9	107
489	Nonlinear Optical Phenomena in Nanostructured Fractal Materials. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 131-152.	1.1	12
490	Direct observation of localized dipolar excitations on rough nanostructured surfaces. Physical Review B, 1998, 58, 11441-11448.	1.1	79
491	Numerical studies of second- and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering. Physical Review E, 1997, 55, 7313-7333.	0.8	4
492	Surface-Enhanced Optical Nonlinearities of Nanostructured Fractal Materials. Fractals, 1997, 05, 63-82.	1.8	1
493	<title>Giant optical nonlinearities of fractal colloid aggregates</title> ., 1997, 3146, 107.		3
494	Fluctuations of light scattered by fractal clusters. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 60.	0.8	8
495	Fractal-Surface-Enhanced Optical Nonlinearities. ACS Symposium Series, 1997, , 88-107.	0.5	5
496	Theory of giant Raman scattering from semicontinuous metal films. Physical Review B, 1997, 55, 13234-13245.	1.1	88
497	Nonlinear optics of fractal nanomaterials: Small-particle composites and self-affine thin films. Physica A: Statistical Mechanics and Its Applications, 1997, 241, 249-258.	1.2	9
498	Fractal-Surface-Enhanced Optical Responses. , 1997, , 237-251.		3
499	Enhanced Raman scattering from self-affine thin films. Optics Letters, 1996, 21, 1628.	1.7	47
500	Optical properties of self-affine thin films. Physical Review B, 1996, 54, 8235-8242.	1.1	54
501	Two-photon electron emission from smooth and rough metal films in the threshold region. Physical Review B, 1996, 53, 11193-11206.	1.1	43
502	Small-particle composites. I. Linear optical properties. Physical Review B, 1996, 53, 2425-2436.	1.1	202
503	Small-particle composites. II. Nonlinear optical properties. Physical Review B, 1996, 53, 2437-2449.	1.1	134
504	Electromagnetic properties of small-particle composites. Physics Reports, 1996, 272, 61-137.	10.3	351

#	Article	IF	Citations
505	Light-induced kinetic effects in solids. Physical Review B, 1996, 53, 11388-11402.	1.1	53
506	Shalaev and Moskovits Reply:. Physical Review Letters, 1995, 75, 2451-2451.	2.9	16
507	RESONANT OPTICS OF FRACTALS. Fractals, 1994, 02, 201-209.	1.8	6
508	Electron escape and photoemission in the threshold region. Physical Review B, 1994, 49, 1437-1440.	1.1	3
509	Optical free-induction decay in fractal clusters. Physical Review B, 1994, 50, 12987-12990.	1.1	8
510	Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Physical Review Letters, 1994, 72, 4149-4152.	2.9	235
511	Fractals: Localization of dipole excitations and giant optical polarizabilities. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 197-207.	1.2	47
512	Fractal character and direct and indirect transitions in photoemission from silver films. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 352-359.	1.2	9
513	Subwavelength Localization of Optical Modes in Fractals. Materials Research Society Symposia Proceedings, 1994, 351, 449.	0.1	0
514	Optical Properties of Fractal Nanocomposites. Materials Research Society Symposia Proceedings, 1994, 367, 417.	0.1	2
515	The role of localized surface plasmons in photoemission from silver films: Direct and indirect transition channels. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 167-175.	0.8	5
516	Direct and roughness-induced indirect transitions in photoemission from silver films. Surface Science, 1993, 297, L84-L90.	0.8	10
517	Localization of collective dipole excitations on fractals. Physical Review B, 1993, 48, 6662-6664.	1.1	42
518	Resonant excitations and nonlinear optics of fractals. Physica A: Statistical Mechanics and Its Applications, 1992, 185, 181-186.	1.2	50
519	Scattering and localization of light on fractals. Physica A: Statistical Mechanics and Its Applications, 1992, 191, 352-357.	1.2	20
520	Light-induced drift of electrons in metals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 169, 205-210.	0.9	18
521	Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Physical Review B, 1992, 46, 2821-2830.	1.1	260
522	Field work and dispersion relations of excitations on fractals. Physical Review B, 1991, 44, 115-121.	1.1	33

#	Article	IF	Citations
523	Resonant light scattering by fractal clusters. Physical Review B, 1991, 44, 12216-12225.	1.1	57
524	Nonlinear optics of metal fractal clusters. Zeitschrift FÃ $^1\!\!/_4$ r Physik D-Atoms Molecules and Clusters, 1990, 17, 283-289.	1.0	64
525	Fractals: optical susceptibility and giant raman scattering. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1988, 10, 71-79.	1.0	54
526	Fractals: giant impurity nonlinearities in optics of fractal clusters. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1988, 10, 81-92.	1.0	39
527	On two-photon excited gas drift under a train of ultrashort laser pulses. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1988, 8, 367-369.	1.0	1
528	LID sound generated by pulsed excitation in gases. Journal of Physics B: Atomic and Molecular Physics, 1987, 20, 2733-2743.	1.6	1
529	Phase conjugation of CO2-laser radiation by a three-beam interaction. Optical and Quantum Electronics, 1987, 19, 259-264.	1.5	0
530	Self-diffraction of CO2-laser radiation in SF6. Optical and Quantum Electronics, 1986, 18, 115-121.	1.5	3
531	Unidirectional Doppler-free gain and generation in optically pumped lasers. Applied Physics B, Photophysics and Laser Chemistry, 1982, 27, 63-67.	1.5	1
532	Drift of gases induced by nonmonochromatic light. Applied Physics Berlin, 1981, 25, 347-350.	1.4	10
533	Doppler-free spectroscopy and wave-front conjugation by four-wave mixing of nonmonochromatic waves. Applied Physics Berlin, 1980, 21, 93-94.	1.4	8
534	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). , 0, .		1
535	Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser and Photonics Reviews, 0, , 2200137.	4.4	5