Vlad Shalaev

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1904982/vlad-shalaev-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,434 184 91 407 h-index g-index citations papers 7.84 7.6 42,317 550 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
407	Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. <i>Applied Physics B: Lasers and Optics</i> , 2022 , 128, 1	1.9	1
406	Optimizing Startshot Lightsail Design: A Generative Network-Based Approach. <i>ACS Photonics</i> , 2022 , 9, 190-196	6.3	2
405	A tribute to Mark Stockman. <i>Nanophotonics</i> , 2021 , 10, 3569-3585	6.3	
404	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11367-11376	6.1	2
403	Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. <i>Nano Letters</i> , 2021 , 21, 8182-8189	11.5	6
402	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36	21.8	3
401	Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. <i>ACS Photonics</i> , 2021 , 8, 521-530	6.3	6
400	Machine Learning for Integrated Quantum Photonics. ACS Photonics, 2021, 8, 34-46	6.3	9
399	Single and Multi-Mode Directional Lasing from Arrays of Dielectric Nanoresonators. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000411	8.3	17
398	High-harmonic generation in metallic titanium nitride. <i>Nature Communications</i> , 2021 , 12, 4981	17.4	4
397	Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. <i>Optics Letters</i> , 2021 , 46, 5433-5436	3	O
396	High-efficiency broadband achromatic metalens for near-IR biological imaging window. <i>Nature Communications</i> , 2021 , 12, 5560	17.4	22
395	Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000343	8.3	22
394	Room-temperature single-photon emitters in silicon nitride. <i>Science Advances</i> , 2021 , 7, eabj0627	14.3	2
393	Machine learning framework for quantum sampling of highly constrained, continuous optimization problems. <i>Applied Physics Reviews</i> , 2021 , 8, 041418	17.3	3
392	Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. <i>Applied Physics Reviews</i> , 2020 , 7, 021407	17.3	67
391	Plasmonic and phononic properties of epitaxial conductive transition metal nitrides. <i>Journal of Optics (United Kingdom)</i> , 2020 , 22, 084001	1.7	12

(2020-2020)

390	Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. <i>Science</i> , 2020 , 369, 423-426	33.3	46
389	Transdimensional material platforms for tunable metasurface design. MRS Bulletin, 2020 , 45, 188-195	3.2	6
388	Broad Frequency Shift of Parametric Processes in Epsilon-Near-Zero Time-Varying Media. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 1318	2.6	12
387	Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity. <i>ACS Photonics</i> , 2020 , 7, 472-479	6.3	6
386	Negative Refraction in Time-Varying Strongly Coupled Plasmonic-Antenna-Epsilon-Near-Zero Systems. <i>Physical Review Letters</i> , 2020 , 124, 043902	7.4	31
385	Dynamical Control of Broadband Coherent Absorption in ENZ Films. <i>Micromachines</i> , 2020 , 11,	3.3	4
384	TiN@TiO2 CoreBhell Nanoparticles as Plasmon-Enhanced Photosensitizers: The Role of Hot Electron Injection. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900376	8.3	16
383	Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. <i>Physical Review Research</i> , 2020 , 2,	3.9	9
382	High-temperature, spectrally-selective, scalable, and flexible thin-film Si absorber and emitter. <i>Optical Materials Express</i> , 2020 , 10, 208	2.6	6
381	Hybrid magneto photonic material structure for plasmon assisted magnetic switching. <i>Optical Materials Express</i> , 2020 , 10, 3107	2.6	1
380	Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular beam epitaxy. <i>Optical Materials Express</i> , 2020 , 10, 2679	2.6	13
379	Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. <i>Optica</i> , 2020 , 7, 226	8.6	32
378	Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas. <i>Optica</i> , 2020 , 7, 463	8.6	31
377	Machine learning ssisted global optimization of photonic devices. <i>Nanophotonics</i> , 2020 , 10, 371-383	6.3	30
376	Dynamically controlled random lasing with colloidal titanium carbide MXene. <i>Optical Materials Express</i> , 2020 , 10, 2304	2.6	1
375	Ten years of spasers and plasmonic nanolasers. <i>Light: Science and Applications</i> , 2020 , 9, 90	16.7	82
374	Broadband, High-Speed, and Large-Amplitude Dynamic Optical Switching with Yttrium-Doped Cadmium Oxide. <i>Advanced Functional Materials</i> , 2020 , 30, 1908377	15.6	18
373	On-Chip Single-Layer Integration of Diamond Spins with Microwave and Plasmonic Channels. <i>ACS Photonics</i> , 2020 , 7, 2018-2026	6.3	3

372	Enhancing the graphene photocurrent using surface plasmons and a p-n junction. <i>Light: Science and Applications</i> , 2020 , 9, 126	16.7	24
371	Broadband Ultrafast Dynamics of Refractory Metals: TiN and ZrN. <i>Advanced Optical Materials</i> , 2020 , 8, 2000652	8.1	18
370	Chip-Compatible Quantum Plasmonic Launcher. Advanced Optical Materials, 2020, 8, 2000889	8.1	6
369	Rapid Classification of Quantum Sources Enabled by Machine Learning. <i>Advanced Quantum Technologies</i> , 2020 , 3, 2000067	4.3	10
368	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. <i>Nano Letters</i> , 2020 , 20, 3663-3672	11.5	20
367	Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. <i>Faraday Discussions</i> , 2019 , 214, 283-295	3.6	14
366	Feature issue introduction: Beyond Thin Films: Photonics with Ultrathin and Atomically Thin Materials. <i>Optical Materials Express</i> , 2019 , 9, 2427	2.6	2
365	Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance. <i>Nano Letters</i> , 2019 , 19, 3796-3803	11.5	16
364	Overcoming quantum decoherence with plasmonics. <i>Science</i> , 2019 , 364, 532-533	33.3	43
363	Spatiotemporal light control with active metasurfaces. <i>Science</i> , 2019 , 364,	33.3	327
363 362	Spatiotemporal light control with active metasurfaces. <i>Science</i> , 2019 , 364, Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356	33·3 6.3	327
			<i>,</i>
362	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356 Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage.	6.3	11
362 361	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356 Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1805513	6.3	11
362 361 360	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356 Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1805513 Tuning Topology of Photonic Systems with Transparent Conducting Oxides. <i>ACS Photonics</i> , 2019 , 6, 192	6.3 24 26.15930	11 111 06
362 361 360 359	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356 Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1805513 Tuning Topology of Photonic Systems with Transparent Conducting Oxides. <i>ACS Photonics</i> , 2019 , 6, 192 Spatiotemporal light control with frequency-gradient metasurfaces. <i>Science</i> , 2019 , 365, 374-377	6.3 24 26.1930 33-3	11 111 06 65
362 361 360 359 358	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356 Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1805513 Tuning Topology of Photonic Systems with Transparent Conducting Oxides. <i>ACS Photonics</i> , 2019 , 6, 192 Spatiotemporal light control with frequency-gradient metasurfaces. <i>Science</i> , 2019 , 365, 374-377 Roadmap on metasurfaces. <i>Journal of Optics (United Kingdom)</i> , 2019 , 21, 073002	6.3 24 26.3930 33.3 1.7	11 111 06 65

(2018-2019)

354	Achieving full-color generation with polarization-tunable perfect light absorption. <i>Optical Materials Express</i> , 2019 , 9, 779	2.6	28
353	Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films. <i>Optical Materials Express</i> , 2019 , 9, 3911	2.6	7
352	Hybrid Photonic-Plasmonic Waveguides with Ultrathin TiN 2019 ,		1
351	Artificial-intelligence-assisted photonics (Conference Presentation) 2019,		2
350	Near-zero-index materials for photonics. <i>Nature Reviews Materials</i> , 2019 , 4, 742-760	73.3	102
349	Photonic Spin Hall Effect in Robust Phase Gradient Metasurfaces Utilizing Transition Metal Nitrides. <i>ACS Photonics</i> , 2019 , 6, 99-106	6.3	25
348	Exploring Time-Resolved Multiphysics of Active Plasmonic Systems with Experiment-Based Gain Models. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1800071	8.3	7
347	Roadmap on plasmonics. <i>Journal of Optics (United Kingdom)</i> , 2018 , 20, 043001	1.7	174
346	Low-loss plasmon-assisted electro-optic modulator. <i>Nature</i> , 2018 , 556, 483-486	50.4	186
345	Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media. <i>Physical Review Letters</i> , 2018 , 120, 043902	7.4	50
344	Engineered nonlinear materials using gold nanoantenna array. Scientific Reports, 2018, 8, 780	4.9	7
343	Dynamic Control of Nanocavities with Tunable Metal Oxides. <i>Nano Letters</i> , 2018 , 18, 740-746	11.5	31
342	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 2018, 5, 1115-17	1823	162
341	Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection. ACS Photonics, 2018, 5, 692-698	6.3	39
340	Accelerating light with metasurfaces. <i>Optica</i> , 2018 , 5, 678	8.6	21
339	Laser-Induced CO Generation from Gold Nanorod-Containing Poly(propylene carbonate)-Based Block Polymer Micelles for Ultrasound Contrast Enhancement. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 26084-26098	9.5	7
338	Ultrathin and multicolour optical cavities with embedded metasurfaces. <i>Nature Communications</i> , 2018 , 9, 2673	17.4	66
337	Optical response of finite-thickness ultrathin plasmonic films. MRS Communications, 2018, 8, 1092-1097	2.7	11

336	Quantum electrodynamics of optical metasurfaces 2018 ,		1
335	Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. <i>Optical Materials Express</i> , 2018 , 8, 3392	2.6	25
334	Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. <i>Optica</i> , 2018 , 5, 1557	8.6	18
333	Emerging materials for tailorable nanophotonic devices 2018,		1
332	Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems. <i>Physical Review Letters</i> , 2018 , 121, 253901	7.4	136
331	Synchrotron radiation from an accelerating light pulse. <i>Science</i> , 2018 , 362, 439-442	33.3	20
330	On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films. <i>ACS Photonics</i> , 2018 , 5, 4423-4431	6.3	22
329	Material platforms for optical metasurfaces. <i>Nanophotonics</i> , 2018 , 7, 959-987	6.3	90
328	High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. <i>ACS Nano</i> , 2018 , 12, 5376-5384	16.7	36
327	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. <i>ACS Energy Letters</i> , 2018 , 3, 1578-1583	20.1	20
326	Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level. <i>ACS Photonics</i> , 2018 , 5, 2816-2824	6.3	51
325	Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. <i>Nano Letters</i> , 2018 , 18, 4837-4844	11.5	78
324	Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. <i>Advanced Optical Materials</i> , 2017 , 5, 1600717	8.1	30
323	Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017, 4, 674-680	6.3	34
322	Titanium nitride based hybrid plasmonic-photonic waveguides for on-chip plasmonic interconnects 2017 ,		1
321	Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. <i>Advanced Optical Materials</i> , 2017 , 5, 1601031	8.1	147
320	Temperature-Dependent Optical Properties of Single Crystalline and Polycrystalline Silver Thin Films. <i>ACS Photonics</i> , 2017 , 4, 1083-1091	6.3	38
319	Pancharatnam B erry Phase Manipulating Metasurface for Visible Color Hologram Based on Low Loss Silver Thin Film. <i>Advanced Optical Materials</i> , 2017 , 5, 1700196	8.1	43

318	Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. <i>ACS Photonics</i> , 2017 , 4, 1413-1420	6.3	91
317	Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers. <i>Springer Series in Solid-state Sciences</i> , 2017 , 97-120	0.4	1
316	Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials, 2017, 5, 1700065	8.1	70
315	Applying plasmonics to a sustainable future. <i>Science</i> , 2017 , 356, 908-909	33.3	68
314	High temperature efficient, stable Si wafer-based selective solar absorbers. <i>Applied Physics Letters</i> , 2017 , 110, 141101	3.4	11
313	Evolution of Metallicity in Vanadium Dioxide by Creation of Oxygen Vacancies. <i>Physical Review Applied</i> , 2017 , 7,	4.3	65
312	High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. <i>Advanced Materials</i> , 2017 , 29, 1605177	24	64
311	Enhanced Graphene Photodetector with Fractal Metasurface. <i>Nano Letters</i> , 2017 , 17, 57-62	11.5	84
310	Patterned multilayer metamaterial for fast and efficient photon collection from dipolar emitters. <i>Optics Letters</i> , 2017 , 42, 3968-3971	3	2
309	Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds. <i>Physical Review B</i> , 2017 , 96,	3.3	16
308	Solar-Energy Harvesting: Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride (Advanced Optical Materials 15/2017). <i>Advanced Optical Materials</i> , 2017 , 5,	8.1	2
307	Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700212	8.3	50
306	Ultra-thin plasmonic metal nitrides: Tailoring optical properties to photonic applications 2017,		1
305	Optical Properties of Ultrathin Plasmonic TiN Films 2017,		3
304	Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. <i>Optics Express</i> , 2017 , 25, 12	229,5;-12	2303
303	Material platforms for integrated quantum photonics. Optical Materials Express, 2017, 7, 111	2.6	77
302	Superconducting detector for visible and near-infrared quantum emitters [Invited]. <i>Optical Materials Express</i> , 2017 , 7, 513	2.6	13
301	Universal features of the optical properties of ultrathin plasmonic films. <i>Optical Materials Express</i> , 2017 , 7, 3731	2.6	25

300	Surface-plasmon opto-magnetic field enhancement for all-optical magnetization switching. <i>Optical Materials Express</i> , 2017 , 7, 4316	2.6	25
299	Active Metamaterials Based on Monolayer Titanium Carbide MXene for Random Lasing 2017,		2
298	Plasmonic Resonances in Nanostructured MXene: Highly Broadband Absorber 2017,		2
297	Plasmonic Antenna Resonance Pinning and Suppression of Near-Field Coupling from Epsilon-Near-Zero Substrate 2017 ,		2
296	Broadband hot electron generation for solar energy conversion with plasmonic titanium nitride 2017 ,		1
295	Dynamic nanophotonics [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2017 , 34, 95	1.7	24
294	Temperature-dependent optical properties of gold thin films. Optical Materials Express, 2016, 6, 2776	2.6	105
293	Enhanced Nonlinear Refractive Index in ENear-Zero Materials. <i>Physical Review Letters</i> , 2016 , 116, 23390	17.4	224
292	APPLIED PHYSICS. Plasmonicsturning loss into gain. Science, 2016, 351, 334-5	33.3	56
291	Evolution of photonic metasurfaces: from static to dynamic. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 501	1.7	56
290	Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. <i>Nature Nanotechnology</i> , 2016 , 11, 53-9	28.7	177
289	Lasing Action in Gold Nanorod Hyperbolic Metamaterials 2016,		4
288	Plasmonic Interconnects Using Zirconium Nitride 2016 ,		3
287	High efficiency phase gradient metasurface using refractory plasmonic Zirconium Nitride 2016,		2
286	Transient Nonlinear Refraction Measurements of Titanium Nitride Thin Films 2016,		1
285	Hot Electron Relaxation in Thin Titanium Nitride Films 2016,		3
284	Photonic Time-Crystals and Momentum Band-Gaps 2016 ,		1
283	Implementation of Metasurface Based Nano-Cavities 2016 ,		1

(2015-2016)

282	Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. <i>Applied Physics Letters</i> , 2016 , 108, 171107	3.4	14
281	Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. <i>MRS Communications</i> , 2016 , 6, 17-22	2.7	11
280	Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. <i>Nano Letters</i> , 2016 , 16, 2471-7	11.5	50
279	Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. <i>Nanophotonics</i> , 2016 , 5, 112-133	6.3	84
278	Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. <i>ACS Nano</i> , 2016 , 10, 9326-9333	16.7	43
277	. Proceedings of the IEEE, 2016 , 104, 2270-2287	14.3	19
276	Roadmap on optical metamaterials. Journal of Optics (United Kingdom), 2016, 18, 093005	1.7	89
275	Nanoparticle plasmonics: going practical with transition metal nitrides. <i>Materials Today</i> , 2015 , 18, 227-2	237 1.8	243
274	Metamaterials: State-of-the Art and Future Directions 2015 , 53-84		
273	Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. <i>ACS Nano</i> , 2015 , 9, 4111-9	16.7	311
272	Plasmonic and new plasmonic materials: general discussion. <i>Faraday Discussions</i> , 2015 , 178, 123-49	3.6	13
271	Gyroidal titanium nitride as nonmetallic metamaterial. <i>Optical Materials Express</i> , 2015 , 5, 1316	2.6	18
270	Photonic spin Hall effect in gapplasmon metasurfaces for on-chip chiroptical spectroscopy. <i>Optica</i> , 2015 , 2, 860	8.6	114
269	Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance. <i>Nanophotonics</i> , 2015 , 4, 214-223	6.3	51
268	Color Hologram Generation Using a Pancharatnam-Berry Phase Manipulating Metasurface 2015 ,		1
267	Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. <i>Optica</i> , 2015 , 2, 616	8.6	190
266	Effective third-order nonlinearities in metallic refractory titanium nitride thin films. <i>Optical Materials Express</i> , 2015 , 5, 2395	2.6	40
265	Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 121	1.7	92

264	Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves. <i>Nano Letters</i> , 2015 , 15, 498-505	11.5	24
263	Plasmonics on the slope of enlightenment: the role of transition metal nitrides. <i>Faraday Discussions</i> , 2015 , 178, 71-86	3.6	70
262	Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. <i>Nanophotonics</i> , 2015 , 4, 269-276	6.3	79
261	Time-varying metasurfaces and Lorentz non-reciprocity. <i>Optical Materials Express</i> , 2015 , 5, 2459	2.6	166
2 60	Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. <i>Optical Materials Express</i> , 2015 , 5, 2682	2.6	17
259	Plasmon resonance in multilayer graphene nanoribbons. <i>Laser and Photonics Reviews</i> , 2015 , 9, 650-655	8.3	31
258	Effective third-order nonlinearities in metallic refractory titanium nitride thin films: publisher note. Optical Materials Express, 2015, 5, 2587	2.6	1
257	Materials science. All that glitters need not be gold. <i>Science</i> , 2015 , 347, 1308-10	33.3	49
256	Enhancement of Single-Photon Sources with Metamaterials 2015 , 123-148		2
255	Quasi-coherent thermal emitter based on refractory plasmonic materials. <i>Optical Materials Express</i> , 2015 , 5, 2721	2.6	57
254	Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. <i>Laser and Photonics Reviews</i> , 2015 , 9, 120-127	8.3	75
253	Applied physics. Refractory plasmonics. <i>Science</i> , 2014 , 344, 263-4	33.3	263
252	Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 7546-51	11.5	164
251	Electrical modulation of fano resonance in plasmonic nanostructures using graphene. <i>Nano Letters</i> , 2014 , 14, 78-82	11.5	165
250	TiN/(Al,Sc)N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range. <i>Physical Review B</i> , 2014 , 90,	3.3	41
249	Optically active metasurface with non-chiral plasmonic nanoantennas. <i>Nano Letters</i> , 2014 , 14, 4426-31	11.5	90
248	Efficient light bending with isotropic metamaterial Huygens' surfaces. <i>Nano Letters</i> , 2014 , 14, 2491-7	11.5	257
247	Highly directional spaser array for the red wavelength region. <i>Laser and Photonics Reviews</i> , 2014 , 8, 896		60

(2013-2014)

246	Quantifying local density of optical states of nanorods by fluorescence lifetime imaging. <i>New Journal of Physics</i> , 2014 , 16, 063069	2.9	7
245	Titanium Nitride as a Refractory Plasmonic Material for High Temperature Applications 2014,		1
244	CMOS Compatible Ultra-Compact Modulator 2014 ,		1
243	Optical absorption of hyperbolic metamaterial with stochastic surfaces. <i>Optics Express</i> , 2014 , 22, 8893-9	99.13	14
242	Experimental demonstration of titanium nitride plasmonic interconnects. <i>Optics Express</i> , 2014 , 22, 1223	88 .4 7	65
241	Refractory plasmonics with titanium nitride: broadband metamaterial absorber. <i>Advanced Materials</i> , 2014 , 26, 7959-65	24	432
240	Plasmonic modulator using CMOS-compatible material platform 2014,		1
239	All-dielectric subwavelength metasurface focusing lens. <i>Optics Express</i> , 2014 , 22, 26212-21	3.3	187
238	Wavelength-tunable spasing in the visible. <i>Nano Letters</i> , 2013 , 13, 4106-12	11.5	145
237	Alternative Plasmonic Materials: Alternative Plasmonic Materials: Beyond Gold and Silver (Adv. Mater. 24/2013). <i>Advanced Materials</i> , 2013 , 25, 3258-3258	24	8
236	Planar photonics with metasurfaces. <i>Science</i> , 2013 , 339, 1232009	33.3	1814
235	Metasurface holograms for visible light. <i>Nature Communications</i> , 2013 , 4,	17.4	898
234	Optical Properties of Gallium-Doped Zinc Oxide Low-Loss Plasmonic Material: First-Principles Theory and Experiment. <i>Physical Review X</i> , 2013 , 3,	9.1	40
233	Experimental validation of a new bianisotropic parameter retrieval technique using plasmonic metasurfaces made of V-shape antennas 2013 ,		4
232	Time-domain modeling of silver nanowires-graphene transparent conducting electrodes 2013,		5
231	Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity. <i>Scientific Reports</i> , 2013 , 3, 1241	4.9	49
230	Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science and Applications, 2013, 2, e72-o	e 70 .7	478
229	Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. <i>Applied Physics Letters</i> , 2013 , 102, 173114	3.4	55

228	Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. <i>Laser and Photonics Reviews</i> , 2013 , 7, 265-271	8.3	121
227	Active and Tuneable Metallic Nanoslit Lenses 2013 , 289-316		О
226	Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25, 3264-94	24	1395
225	Holey-metal lenses: sieving single modes with proper phases. <i>Nano Letters</i> , 2013 , 13, 159-63	11.5	75
224	Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. <i>Nano Letters</i> , 2013 , 13, 6078-83	11.5	199
223	Homogenization of bi-anisotropic metasurfaces. <i>Optics Express</i> , 2013 , 21, 21941-50	3.3	16
222	Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. <i>Optics Express</i> , 2013 , 21, 27326-37	3.3	98
221	Plasmonic Metasurface Based Ultra-thin Phase Holograms and Planar Micro-lenses 2013,		1
220	Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 106, 577-581	1.9	8
219	Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8834-8	11.5	252
218	Broadband light bending with plasmonic nanoantennas. Science, 2012, 335, 427	33.3	1078
217	Near field enhancement in silver nanoantenna-superlens systems. <i>Applied Physics Letters</i> , 2012 , 101, 021109	3.4	11
216	Coupling effect in a near-field objectBuperlens system. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 107, 83-88	2.6	5
215	Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 107, 285-291	1.9	108
214	Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. <i>Optics Express</i> , 2012 , 20, 8100-16	3.3	125
213	TUNABLE AND ACTIVE OPTICAL NEGATIVE INDEX METAMATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2011 , 255-284	0.1	
212	Transformation optics. Journal of Optics (United Kingdom), 2011, 13, 020201-020201	1.7	5
211	Loss-compensated and active hyperbolic metamaterials. <i>Optics Express</i> , 2011 , 19, 25242-54	3.3	104

(2010-2011)

210	Metal nanoslit lenses with polarization-selective design. Optics Letters, 2011, 36, 451-3	3	62
209	Metal nanoslit lenses with polarization-selective design: erratum. <i>Optics Letters</i> , 2011 , 36, 1244	3	3
208	Into the visible. Physics World, 2011, 24, 30-34	0.5	2
207	Bianisotropic Effective Parameters of Optical Metamagnetics and Negative-Index Materials. <i>Proceedings of the IEEE</i> , 2011 , 99, 1691-1700	14.3	23
206	Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 103, 553-558	1.9	54
205	Characterization of nanodiamonds for metamaterial applications. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 105, 191-195	1.9	13
204	Physics. Plasmonics goes quantum. <i>Science</i> , 2011 , 334, 463-4	33.3	134
203	Nonlinear and active metamaterials 2011,		2
202	Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens 2011,		1
201	Transformation optics and metamaterials. <i>Physics-Uspekhi</i> , 2011 , 54, 53-63	2.8	56
200	Loss-free and active optical negative-index metamaterials. <i>Nature</i> , 2010 , 466, 735-8	50.4	608
199	Semiconductor plasmonic metamaterials for near-infrared and telecommunication wavelength 2010 ,		4
199			1
	2010,	3-4	1 43
198	2010, Maxwell fisheye and Eaton lenses emulated by a microdroplet 2010, Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing. <i>Applied Physics Letters</i> ,	3·4 3·5	
198	2010, Maxwell fisheye and Eaton lenses emulated by a microdroplet 2010, Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing. <i>Applied Physics Letters</i> , 2010, 97, 211107		43
198 197 196	Maxwell fisheye and Eaton lenses emulated by a microdroplet 2010, Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing. <i>Applied Physics Letters</i> , 2010, 97, 211107 Broadband Transformation Optics Devices. <i>Materials</i> , 2010, 3, 4793-4810 Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. <i>Optics Express</i> , 2010	3.5	6

192	Maxwell fish-eye and Eaton lenses emulated by microdroplets. <i>Optics Letters</i> , 2010 , 35, 3396-8	3	43
191	Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 2465	1.7	10
190	Experimental observation of the trapped rainbow. <i>Applied Physics Letters</i> , 2010 , 96, 211121	3.4	46
189	Optical Metamaterials 2010 ,		484
188	Drude relaxation rate in grained gold nanoantennas. <i>Nano Letters</i> , 2010 , 10, 916-22	11.5	153
187	Applied physics. The case for plasmonics. <i>Science</i> , 2010 , 328, 440-1	33.3	419
186	Optical Metamaterials: Invisibility in Visible and Nonlinearities in Reverse. <i>Springer Series in Optical Sciences</i> , 2010 , 217-240	0.5	1
185	FDTD modeling of realistic semicontinuous metal films. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 159-168	1.9	42
184	Toward superlensing with metaldielectric composites and multilayers. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 93-100	1.9	27
183	Engineering photonic density of states using metamaterials. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 215-218	1.9	309
182	Introduction to the Special Issue on Metamaterials. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 363-366	3.8	1
181	Searching for better plasmonic materials. <i>Laser and Photonics Reviews</i> , 2010 , 4, 795-808	8.3	1346
180	Coherent nonlinear-optical energy transfer and backward-wave optical parametric generation in negative-index metamaterials. <i>Physica B: Condensed Matter</i> , 2010 , 405, 2999-3002	2.8	7
179	Translation of nanoantenna hot spots by a metal-dielectric composite superlens. <i>Applied Physics Letters</i> , 2009 , 95, 033114	3.4	16
178	Coherent nonlinear optics and quantum control in negative-index metamaterials. <i>Journal of Optics</i> , 2009 , 11, 114028		8
177	Resonant nonlinear optics of backward waves in negative-index metamaterials. <i>Applied Physics B: Lasers and Optics</i> , 2009 , 96, 315-323	1.9	11
176	Demonstration of a spaser-based nanolaser. <i>Nature</i> , 2009 , 460, 1110-2	50.4	1592
175	Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. <i>Physical Review Letters</i> , 2009 , 102, 213901	7.4	155

(2008-2009)

174	Tunable magnetic response of metamaterials. <i>Applied Physics Letters</i> , 2009 , 95, 033115	3.4	130
173	Microscopic mirrorless negative-index optical parametric oscillator. <i>Optics Letters</i> , 2009 , 34, 1165-7	3	25
172	Frequency-domain modeling of TM wave propagation in optical nanostructures with a third-order nonlinear response. <i>Optics Letters</i> , 2009 , 34, 3364-6	3	9
171	Yellow-light negative-index metamaterials. <i>Optics Letters</i> , 2009 , 34, 3478-80	3	124
170	Metamaterials: transforming theory into reality. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, B161	1.7	25
169	Simplified model for periodic nanoantennae: linear model and inverse design. <i>Optics Express</i> , 2009 , 17, 11607-17	3.3	9
168	Frequency-domain simulations of a negative-index material with embedded gain. <i>Optics Express</i> , 2009 , 17, 24060-74	3.3	61
167	Materializing a binary hyperlens design. <i>Applied Physics Letters</i> , 2009 , 94, 071102	3.4	23
166	Plasmonics: nonlinear optics, negative phase, and transformable transparency 2009,		2
165	Fabricating Plasmonic Components for Nano- and Meta-Photonics. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2009 , 209-221	0.2	
164	Chapter 1 Negative refractive index metamaterials in optics. <i>Progress in Optics</i> , 2008 , 51, 1-67	3.4	20
163	Gold nanorod arrays as plasmonic cavity resonators. ACS Nano, 2008, 2, 2569-76	16.7	122
162	Transformation optics: approaching broadband electromagnetic cloaking. <i>New Journal of Physics</i> , 2008 , 10, 115029	2.9	52
161	Engineering space for light via transformation optics. <i>Optics Letters</i> , 2008 , 33, 43-5	3	149
160	Metamaterials: electromagnetic enhancement at zero-index transition. <i>Optics Letters</i> , 2008 , 33, 2350-2	3	78
159	The Ag dielectric function in plasmonic metamaterials. <i>Optics Express</i> , 2008 , 16, 1186-95	3.3	215
158	Designs for optical cloaking with high-order transformations. <i>Optics Express</i> , 2008 , 16, 5444-52	3.3	120
157	Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. <i>Optics Express</i> , 2008 , 16, 11822-9	3.3	79

156	Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. <i>New Journal of Physics</i> , 2008 , 10, 125022	2.9	97
155	Physics. Transforming light. <i>Science</i> , 2008 , 322, 384-6	33.3	204
154	Optical Metamagnetism and Negative-Index Metamaterials. MRS Bulletin, 2008, 33, 921-926	3.2	30
153	Plasmonic nanoantenna arrays for the visible. <i>Metamaterials</i> , 2008 , 2, 45-51		102
152	Mid-IR plasmonics and photomodification with Ag films. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 93, 59-68	1.9	29
151	Imaging contrast under aperture tipBanoantenna array interaction. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 93, 189-198	1.9	3
150	Photonic metamaterials. <i>Laser Physics Letters</i> , 2008 , 5, 411-420	1.5	41
149	Fabrication of optical negative-index metamaterials: Recent advances and outlook. <i>Metamaterials</i> , 2008 , 2, 1-17		212
148	Enhanced localized fluorescence in plasmonic nanoantennae. <i>Applied Physics Letters</i> , 2008 , 92, 043101	3.4	156
147	Near-field, broadband optical spectroscopy of metamaterials. <i>Physica B: Condensed Matter</i> , 2007 , 394, 137-140	2.8	11
146	Optical negative-index metamaterials. <i>Nature Photonics</i> , 2007 , 1, 41-48	33.9	2136
145	Optical cloaking with metamaterials. <i>Nature Photonics</i> , 2007 , 1, 224-227	33.9	1515
144	Nonmagnetic cloak with minimized scattering. <i>Applied Physics Letters</i> , 2007 , 91, 111105	3.4	226
143	Tunable optical negative-index metamaterials employing anisotropic liquid crystals. <i>Applied Physics Letters</i> , 2007 , 91, 143122	3.4	103
142	Collective electronic states in inhomogeneous media at critical and subcritical metal concentrations. <i>Physical Review B</i> , 2007 , 75,	3.3	2
141	Effect of an optical negative index thin film on optical bistability. <i>Optics Letters</i> , 2007 , 32, 151-3	3	51
140	Comment on "Negative refractive index in artificial metamaterials". Optics Letters, 2007, 32, 1510-1	3	6
139	Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. <i>Optics Letters</i> , 2007 , 32, 1671-3	3	160

(2006-2007)

138	Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials. <i>Optics Letters</i> , 2007 , 32, 3044-6	3	44
137	Stochastic optimization of low-loss optical negative-index metamaterial. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, A34	1.7	22
136	A negative permeability material at red light. Optics Express, 2007, 15, 1076-83	3.3	161
135	Near-infrared metamaterials with dual-band negative-index characteristics. <i>Optics Express</i> , 2007 , 15, 1647-52	3.3	49
134	Metamagnetics with rainbow colors. <i>Optics Express</i> , 2007 , 15, 3333-41	3.3	226
133	Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. <i>Optics Express</i> , 2007 , 15, 3342-7	3.3	146
132	Near-field excitation of nanoantenna resonance. <i>Optics Express</i> , 2007 , 15, 13682-8	3.3	60
131	Compensating losses in positive- and negative-index metamaterials through nonlinear-optical quantum switching 2007 ,		1
130	SENSING PROTEINS WITH ADAPTIVE METAL NANOSTRUCTURES 2007 , 197-215		
129	Experimental verification of an optical negative-index material. <i>Laser Physics Letters</i> , 2006 , 3, 49-55	1.5	97
128	Second harmonic generation in left-handed metamaterials. <i>Laser Physics Letters</i> , 2006 , 3, 293-297	1.5	62
127	Coexistence of localized and delocalized surface plasmon modes in percolating metal films. <i>Physical Review Letters</i> , 2006 , 97, 206103	7.4	66
126	Saturation effect in the optical response of Ag-nanoparticle fractal aggregates. <i>Physical Review B</i> , 2006 , 73,	3.3	11
125	From low-loss to lossless optical negative-index materials 2006 ,		1
124	Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate. <i>Physical Review B</i> , 2006 , 74,	3.3	39
123	Negative-Index Metamaterials: Going Optical. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 1106-1115	3.8	97
122	Compensating losses in negative-index metamaterials by optical parametric amplification. <i>Optics Letters</i> , 2006 , 31, 2169-71	3	183
121	Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. <i>Optics Letters</i> , 2006 , 31, 3022-4	3	185

120	Focus Issue on Metamaterials. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 386	1.7	14
119	Negative refractive index in optics of metal-dielectric composites. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2006 , 23, 423	1.7	124
118	Double-resonant optical materials with embedded metal nanostructures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2006 , 23, 535	1.7	31
117	Negative index metamaterial combining magnetic resonators with metal films. <i>Optics Express</i> , 2006 , 14, 7872-7	3.3	85
116	Magnetic plasmon resonance. <i>Physical Review E</i> , 2006 , 73, 036609	2.4	80
115	Biomolecule Sensing with Adaptive Plasmonic Nanostructures 2006 , 351-366		5
114	Adaptive silver films for detection of antibody-antigen binding. <i>Langmuir</i> , 2005 , 21, 8368-73	4	52
113	Negative index of refraction in optical metamaterials. <i>Optics Letters</i> , 2005 , 30, 3356-8	3	1273
112	Effect of Ag aggregate on spectroscopic properties of Eu: Y2O3 nanoparticles. <i>Journal of Modern Optics</i> , 2005 , 52, 2331-2341	1.1	15
111	Resonant light interaction with plasmonic nanowire systems. <i>Journal of Optics</i> , 2005 , 7, S32-S37		84
110	Superlens based on metal-dielectric composites. <i>Physical Review B</i> , 2005 , 72,	3.3	115
109	Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates. <i>Journal of Optics</i> , 2005 , 7, S219-S229		46
108	Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. <i>Journal of Raman Spectroscopy</i> , 2005 , 36, 648-656	2.3	52
107	Light diffraction by a subwavelength circular aperture. <i>Laser Physics Letters</i> , 2005 , 2, 351-355	1.5	15
106	Nanostructures + Light = New Optics (Journal of Optics, 2005, 7, S1-S1		4
105	Near-field intensity correlations in semicontinuous metal-dielectric films. <i>Physical Review Letters</i> , 2005 , 94, 226101	7.4	49
104	Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films. <i>Physical Review B</i> , 2005 , 72,	3.3	32
103	Plasmonic Nanowire Metamaterials 2005 , 313-337		3

(2002-2004)

102	Quantum size effect in two-photon excited luminescence from silver nanoparticles. <i>Physical Review B</i> , 2004 , 69,	3.3	31
101	Magnetic resonance in metal nanoantennas 2004 , 5508, 128		14
100	Size Dependent (B) for Conduction Electrons in Ag Nanoparticles. Nano Letters, 2004, 4, 1535-1539	11.5	80
99	Resonant Field Enhancements from Metal Nanoparticle Arrays. <i>Nano Letters</i> , 2004 , 4, 153-158	11.5	346
98	Enhanced transmission in near-field imaging of layered plasmonic structures. <i>Optics Express</i> , 2004 , 12, 3701-6	3.3	15
97	Surface-Enhanced Raman Difference between Human Insulin and Insulin Lispro Detected with Adaptive Nanostructures. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18046-18052	3.4	91
96	METAL-DIELECTRIC COMPOSITE FILTERS WITH CONTROLLED SPECTRAL WINDOWS OF TRANSPARENCY. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2003 , 12, 419-440	0.8	23
95	Optical properties of metal nanowires 2003,		4
94	Semicontinuous silver films for protein sensing with SERS 2003 , 5221, 76		6
93	Periodical arrays of optical nano-antennas (Critical Review Lecture) 2003, 5218, 81		2
92	Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits 2003 ,		10
91	Growth, morphology, and optical and electrical properties of semicontinuous metallic films. <i>Physical Review B</i> , 2003 , 67,	3.3	95
90	Local field distribution in random metaldielectric films; theory and experiment. <i>Physica B: Condensed Matter</i> , 2003 , 338, 228-231	2.8	3
89	Resonant transmittance through metal films with fabricated and light-induced modulation. <i>Physical Review B</i> , 2003 , 67,	3.3	55
88	Plasmon modes and negative refraction in metal nanowire composites. <i>Optics Express</i> , 2003 , 11, 735-45	3.3	219
87	Plasmon localization and local field distribution in metal-dielectric films. <i>Physical Review E</i> , 2003 , 67, 056611	2.4	31
86	Metal coverage dependence of local optical properties of semicontinuous metallic films. <i>Journal of Modern Optics</i> , 2002 , 49, 2423-2435	1.1	6
85	Discrete spectrum of anti-Stokes emission from metal particle-adsorbate complexes in a microcavity 2002 ,		1

84	Optical Nonlinearities of Fractal Composites 2002 , 93-114		22
83	Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity. <i>Journal of Modern Optics</i> , 2002 , 49, 645-662	1.1	20
82	PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS. Journal of Nonlinear Optical Physics and Materials, 2002 , 11, 65-74	0.8	176
81	Fractal nano-composites: Giant local-field enhancement of optical responses. <i>AIP Conference Proceedings</i> , 2001 ,	0	4
80	Plasmon-enhanced absorption by optical phonons in metal-dielectric composites. <i>Europhysics Letters</i> , 2001 , 53, 364-370	1.6	18
79	Percolation Composites: Localization of Surface Plasmons and Enhanced Optical Nonlinearities 2001 , 567-575		
78	Near-field optical studies of semicontinuous metal films. <i>Physical Review B</i> , 2001 , 64,	3.3	68
77	Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2001 , 18, 1112-21	1.8	12
76	Near-field optical study of selective photomodification of fractal aggregates. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 698	1.7	14
75	Large local optical activity in fractal aggregates of nanoparticles. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 1896	1.7	44
74	Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films. <i>Physical Review B</i> , 2001 , 64,	3.3	51
73	Direct observation of locally enhanced electromagnetic field. <i>Physica B: Condensed Matter</i> , 2000 , 279, 52-55	2.8	27
72	Anderson localization of surface plasmons and Kerr nonlinearity in semicontinuous metal films. <i>Physica B: Condensed Matter</i> , 2000 , 279, 87-89	2.8	8
71	Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. <i>Physics Reports</i> , 2000 , 335, 275-371	27.7	250
70	PERCOLATION AND FRACTAL COMPOSITES: OPTICAL STUDIES. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2000 , 09, 105-116	0.8	25
69	Electromagnetic properties of random composites. A review of basic approaches. <i>Springer Tracts in Modern Physics</i> , 2000 , 1-14	0.1	4
68	Local electric and magnetic fields in semicontinuous metal films: Beyond the quasistatic approximation. <i>Physical Review B</i> , 2000 , 62, 11230-11244	3.3	32
67	Electrodynamics of metal-dielectric composites and electromagnetic crystals. <i>Physical Review B</i> , 2000 , 62, 8531-8539	3.3	44

66	Nonlinear Optics of Random Media. Springer Tracts in Modern Physics, 2000,	0.1	179
65	OPTICAL NONLINEARITIES OF METAL-DIELECTRIC COMPOSITES. <i>Journal of Nonlinear Optical Physics and Materials</i> , 1999 , 08, 191-210	0.8	28
64	Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. <i>Physical Review B</i> , 1999 , 59, 10903-10909	3.3	258
63	Percolation-enhanced nonlinear scattering from metal-dielectric composites. <i>Physical Review E</i> , 1999 , 59, 7239-42	2.4	15
62	Elimination of Doppler broadening at coherently driven quantum transitions. <i>Physical Review A</i> , 1999 , 59, R946-R949	2.6	8
61	Toward a universal extinction spectrum of self-affine silver colloid clusters: Experiment and simulation. <i>Journal of Chemical Physics</i> , 1999 , 110, 8080-8083	3.9	8
60	Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal silver aggregates on a plain substrate. <i>Physical Review B</i> , 1999 , 60, 10739	-70742	29
59	Absorption of light by soot particles in micro-droplets of water. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 1999 , 63, 321-339	2.1	16
58	Giant high-order field moments in metaldielectric composites. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 266, 115-122	3.3	14
57	Near-field optical studies of local photomodification in nanostructured materials. <i>Journal of Microscopy</i> , 1999 , 194, 574-7	1.9	8
56	Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites. <i>Physical Review B</i> , 1999 , 60, 16389-16408	3.3	84
55	Fractals in Microcavities: Giant Coupled, Multiplicative Enhancement of Optical Responses. <i>Physical Review Letters</i> , 1999 , 82, 4811-4814	7.4	103
54	Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films. <i>Physical Review Letters</i> , 1999 , 82, 4520-4523	7.4	297
53	COMPUTATIONAL APPROACHES IN OPTICS OF FRACTAL CLUSTERS 1999 , 210-243		1
52	Giant Stokes fields on semicontinuous metal films. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 68	1.7	38
51	Nonlinear optics of random metal-dielectric films. <i>Physical Review B</i> , 1998 , 57, 13265-13288	3.3	210
50	Nonlinear optical phenomena on rough surfaces of metal thin films. <i>Physical Review B</i> , 1998 , 57, 14901-	1 49 13	30
49	Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles. <i>Physical Review Letters</i> , 1998 , 80, 1102-1105	7.4	97

48	Nonlinear Optical Phenomena in Nanostructured Fractal Materials. <i>Journal of Nonlinear Optical Physics and Materials</i> , 1998 , 07, 131-152	0.8	11
47	Direct observation of localized dipolar excitations on rough nanostructured surfaces. <i>Physical Review B</i> , 1998 , 58, 11441-11448	3.3	69
46	Numerical studies of second- and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering. <i>Physical Review E</i> , 1997 , 55, 7313-7333	2.4	4
45	Surface-Enhanced Optical Nonlinearities of Nanostructured Fractal Materials. <i>Fractals</i> , 1997 , 05, 63-82	3.2	1
44	Giant optical nonlinearities of fractal colloid aggregates 1997 , 3146, 107		3
43	Fluctuations of light scattered by fractal clusters. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1997 , 14, 60	1.8	5
42	Fractal-Surface-Enhanced Optical Nonlinearities. ACS Symposium Series, 1997, 88-107	0.4	4
41	Theory of giant Raman scattering from semicontinuous metal films. <i>Physical Review B</i> , 1997 , 55, 13234-	13345	79
40	Nonlinear optics of fractal nanomaterials: Small-particle composites and self-affine thin films. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1997 , 241, 249-258	3.3	7
39	Fractal-Surface-Enhanced Optical Responses 1997 , 237-251		3
38	Enhanced Raman scattering from self-affine thin films. <i>Optics Letters</i> , 1996 , 21, 1628-30	3	39
37	Optical properties of self-affine thin films. <i>Physical Review B</i> , 1996 , 54, 8235-8242	3.3	50
36	Two-photon electron emission from smooth and rough metal films in the threshold region. <i>Physical Review B</i> , 1996 , 53, 11193-11206	3.3	41
35	Small-particle composites. I. Linear optical properties. <i>Physical Review B</i> , 1996 , 53, 2425-2436	3.3	185
34	Small-particle composites. II. Nonlinear optical properties. <i>Physical Review B</i> , 1996 , 53, 2437-2449	3.3	129
33	Electromagnetic properties of small-particle composites. <i>Physics Reports</i> , 1996 , 272, 61-137	27.7	319
32	Light-induced kinetic effects in solids. <i>Physical Review B</i> , 1996 , 53, 11388-11402	3.3	51
31	Shalaev and Moskovits reply. <i>Physical Review Letters</i> , 1995 , 75, 2451	7.4	15

30	RESONANT OPTICS OF FRACTALS. Fractals, 1994 , 02, 201-209	3.2	6
29	Electron escape and photoemission in the threshold region. <i>Physical Review B</i> , 1994 , 49, 1437-1440	3.3	3
28	Optical free-induction decay in fractal clusters. <i>Physical Review B</i> , 1994 , 50, 12987-12990	3.3	8
27	Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. <i>Physical Review Letters</i> , 1994 , 72, 4149-4152	7.4	208
26	Fractals: Localization of dipole excitations and giant optical polarizabilities. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1994 , 207, 197-207	3.3	44
25	Fractal character and direct and indirect transitions in photoemission from silver films. <i>Physica A:</i> Statistical Mechanics and Its Applications, 1994 , 207, 352-359	3.3	9
24	Subwavelength Localization of Optical Modes in Fractals. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 449		
23	Optical Properties of Fractal Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 367, 417		2
22	Direct and roughness-induced indirect transitions in photoemission from silver films. <i>Surface Science</i> , 1993 , 297, L84-L90	1.8	10
21	Localization of collective dipole excitations on fractals. <i>Physical Review B</i> , 1993 , 48, 6662-6664	3.3	39
20	The role of localized surface plasmons in photoemission from silver films: Direct and indirect transition channels. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1993 , 64-65, 167-175	1.7	5
19	Resonant excitations and nonlinear optics of fractals. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 185, 181-186	3.3	48
18	Scattering and localization of light on fractals. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 191, 352-357	3.3	18
17	Light-induced drift of electrons in metals. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 169, 205-210	2.3	16
16	Enhanced Raman scattering by fractal clusters: Scale-invariant theory. <i>Physical Review B</i> , 1992 , 46, 2821	1-3830	239
15	Resonant light scattering by fractal clusters. <i>Physical Review B</i> , 1991 , 44, 12216-12225	3.3	52
14	Field work and dispersion relations of excitations on fractals. <i>Physical Review B</i> , 1991 , 44, 115-121	3.3	29
13	Nonlinear optics of metal fractal clusters. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1990 , 17, 283-289		58

12	Fractals: optical susceptibility and giant raman scattering. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1988 , 10, 71-79		48
11	Fractals: giant impurity nonlinearities in optics of fractal clusters. <i>Zeitschrift FII Physik D-Atoms Molecules and Clusters</i> , 1988 , 10, 81-92		36
10	On two-photon excited gas drift under a train of ultrashort laser pulses. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1988 , 8, 367-369		1
9	LID sound generated by pulsed excitation in gases. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, 2733-2743		1
8	Phase conjugation of CO2-laser radiation by a three-beam interaction. <i>Optical and Quantum Electronics</i> , 1987 , 19, 259-264	2.4	
7	Self-diffraction of CO2-laser radiation in SF6. Optical and Quantum Electronics, 1986, 18, 115-121	2.4	3
6	Unidirectional Doppler-free gain and generation in optically pumped lasers. <i>Applied Physics B, Photophysics and Laser Chemistry</i> , 1982 , 27, 63-67		
5	Drift of gases induced by nonmonochromatic light. <i>Applied Physics Berlin</i> , 1981 , 25, 347-350		10
4	Doppler-free spectroscopy and wave-front conjugation by four-wave mixing of nonmonochromatic waves. <i>Applied Physics Berlin</i> , 1980 , 21, 93-94		7
3	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)		1
2	Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser and Photonics Reviews, 2200137	8.3	1
1	Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. <i>Nano Letters</i> ,	11.5	3