Paul R Kemp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904786/publications.pdf

Version: 2024-02-01

84 papers 4,914 citations

38 h-index 91828 69 g-index

84 all docs

84 docs citations

times ranked

84

6062 citing authors

#	Article	IF	CITATIONS
1	Metabolic profiling shows preâ€existing mitochondrial dysfunction contributes to muscle loss in a model of ICUâ€acquired weakness. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1321-1335.	2.9	22
2	miR-1-5p targets TGF- \hat{l}^2 R1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension. PLoS ONE, 2020, 15, e0229409.	1.1	8
3	Title is missing!. , 2020, 15, e0229409.		0
4	Title is missing!. , 2020, 15, e0229409.		0
5	Title is missing!. , 2020, 15, e0229409.		0
6	Title is missing!. , 2020, 15, e0229409.		0
7	EGF receptor (EGFR) inhibition promotes a slow-twitch oxidative, over a fast-twitch, muscle phenotype. Scientific Reports, 2019, 9, 9218.	1.6	14
8	Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis. Journal of Applied Physiology, 2019, 126, 1514-1524.	1.2	12
9	Growth/differentiation factor 15 causes TGFβ-activated kinase 1 -dependent muscle atrophy in pulmonary arterial hypertension. Thorax, 2019 , 74 , 164 - 176 .	2.7	37
10	Muscle wasting in the presence of disease, why is it so variable?. Biological Reviews, 2019, 94, 1038-1055.	4.7	7
11	miRâ€322â€5p targets <scp>IGF</scp> â€1 and is suppressed in the heart of rats with pulmonary hypertension. FEBS Open Bio, 2018, 8, 339-348.	1.0	27
12	miRâ€424â€5p reduces ribosomal RNA and protein synthesis in muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 400-416.	2.9	67
13	Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials, 2018, 19, 6.	0.7	39
14	COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Scientific Reports, 2018, 8, 12165.	1.6	27
15	miRâ€422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 119-128.	2.9	28
16	Epigenetics and Susceptibility to Muscle Wasting in COPD. Archivos De Bronconeumologia, 2017, 53, 364-365.	0.4	2
17	Epigen $ ilde{A}$ ©tica y propensi $ ilde{A}^3$ n a la atrofia muscular en la EPOC. Archivos De Bronconeumologia, 2017, 53, 364-365.	0.4	2
18	Circulating miRNAs from imprinted genomic regions are associated with peripheral muscle strength in COPDÂpatients. European Respiratory Journal, 2017, 49, 1601881.	3.1	5

#	Article	IF	CITATIONS
19	MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit–acquired Weakness. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1422-1433.	2.5	57
20	Using laser capture microdissection to study fiber specific signaling in locomotor muscle in COPD: A pilot study. Muscle and Nerve, 2017, 55, 902-912.	1.0	4
21	Muscle Regeneration after Critical Illness: Are Satellite Cells the Answer?. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 780-782.	2.5	7
22	Growth differentiation factorâ€15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting ⟨i⟩in vivo⟨/i⟩. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 436-448.	2.9	91
23	Increased expression of H19/miRâ€675 is associated with a low fatâ€free mass index in patients with COPD. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 330-344.	2.9	55
24	FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy. FEBS Open Bio, 2015, 5, 753-762.	1.0	27
25	MiR-181a: a potential biomarker of acute muscle wasting following elective high-risk cardiothoracic surgery. Critical Care, 2015, 19, 147.	2.5	18
26	Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD. European Respiratory Journal, 2014, 44, 1188-1198.	3.1	64
27	Phenotypic Characteristics Associated With Reduced Short Physical Performance Battery Score in COPD. Chest, 2014, 145, 1016-1024.	0.4	54
28	A Randomized Controlled Trial of Angiotensin-Converting Enzyme Inhibition for Skeletal Muscle Dysfunction in COPD. Chest, 2014, 146, 932-940.	0.4	30
29	Vitamin D and skeletal muscle strength and endurance in COPD. European Respiratory Journal, 2013, 41, 309-316.	3.1	43
30	MuRF-1 and Atrogin-1 Protein Expression and Quadriceps Fiber Size and Muscle Mass in Stable Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 10, 618-624.	0.7	24
31	Pathways associated with reduced quadriceps oxidative fibres and endurance in COPD. European Respiratory Journal, 2013, 41, 1275-1283.	3.1	29
32	Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax, 2013, 68, 1140-1149.	2.7	106
33	Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (<scp>Copd</scp>); implications for stratified medicine?. Muscle and Nerve, 2013, 48, 488-497.	1.0	61
34	Sustained Elevation of Circulating Growth and Differentiation Factor-15 and a Dynamic Imbalance in Mediators of Muscle Homeostasis Are Associated With the Development of Acute Muscle Wasting Following Cardiac Surgery*. Critical Care Medicine, 2013, 41, 982-989.	0.4	70
35	Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver. PLoS ONE, 2013, 8, e68933.	1.1	57
36	Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax, 2012, 67, 26-34.	2.7	137

#	Article	IF	Citations
37	Renin–angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clinical Science, 2012, 123, 487-498.	1.8	73
38	Quadriceps wasting and physical inactivity in patients with COPD. European Respiratory Journal, 2012, 40, 1115-1122.	3.1	269
39	Molecular mechanisms of intensive care unit-acquired weakness. European Respiratory Journal, 2012, 39, 1000-1011.	3.1	63
40	p38 Mitogen-activated Protein Kinase is Not Activated in the Quadriceps of Patients with Stable Chronic Obstructive Pulmonary Disease, 2012, 9, 142-150.	0.7	14
41	The health implications of birth by Caesarean section. Biological Reviews, 2012, 87, 229-243.	4.7	161
42	Myostatin induces autophagy in skeletal muscle in vitro. Biochemical and Biophysical Research Communications, 2011, 415, 632-636.	1.0	46
43	Do Miniaturized Extracorporeal Circuits Confer Significant Clinical Benefit Without Compromising Safety? A Meta-Analysis of Randomized Controlled Trials. ASAIO Journal, 2011, 57, 141-151.	0.9	52
44	Expresión y localización del factor de transcripción Yin Yang 1 en el músculo cuádriceps en la enfermedad pulmonar obstructiva crónica. Archivos De Bronconeumologia, 2011, 47, 296-302.	0.4	22
45	A single enteral feed prior to the commencement of parenteral nutrition ameliorates the incidence of steatosis in parenterally fed neonatal piglets. Metabolomics, 2011, 7, 118-125.	1.4	0
46	Delivery by Caesarean section, rather than vaginal delivery, promotes hepatic steatosis in piglets. Clinical Science, 2010, 118, 47-59.	1.8	33
47	Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. Diabetologia, 2010, 53, 1164-1173.	2.9	68
48	Quadriceps myostatin expression in COPD. European Respiratory Journal, 2010, 36, 686-688.	3.1	43
49	Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. Biochemical and Biophysical Research Communications, 2010, 391, 818-823.	1.0	5
50	Exercise and muscle dysfunction in COPD: implications for pulmonary rehabilitation. Clinical Science, 2009, 117, 281-291.	1.8	43
51	Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clinical Science, 2009, 117, 251-264.	1.8	75
52	KLF13 influences multiple stages of both B and T cell development. Cell Cycle, 2008, 7, 2047-2055.	1.3	27
53	Splenomegaly and Modified Erythropoiesis in KLF13–/– Mice. Journal of Biological Chemistry, 2008, 283, 11897-11904.	1.6	36
54	Decreased muscle PPAR concentrations: a mechanism underlying skeletal muscle abnormalities in COPD?. European Respiratory Journal, 2007, 30, 191-193.	3.1	7

#	Article	IF	CITATIONS
55	Overexpression of a family of RPEL proteins modifies cell shape. FEBS Letters, 2005, 579, 100-104.	1.3	15
56	Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression. American Journal of Pathology, 2005, 167, 1497-1509.	1.9	47
57	Visualization of alternative splicing in vivo. Methods, 2005, 37, 360-367.	1.9	5
58	Regulated Tissue-specific Alternative Splicing of Enhanced Green Fluorescent Protein Transgenes Conferred by α-Tropomyosin Regulatory Elements in Transgenic Mice. Journal of Biological Chemistry, 2004, 279, 36660-36669.	1.6	42
59	A Novel Polypyrimidine Tract-binding Protein Paralog Expressed in Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 15201-15207.	1.6	42
60	Selective modulation of the SM22α promoter by the binding of BTEB3 (basal transcription) Tj ETQq0 0 0 rgBT /C	verlock 1 1.7	0 Tf 50 542 T
61	Adhesion of Endothelial Cells to NOV Is Mediated by the Integrins $\hat{l}\pm\hat{vl}^2$ 3 and $\hat{l}\pm5\hat{l}^2$ 1. Journal of Vascular Research, 2003, 40, 234-243.	0.6	32
62	Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. Biochemical Journal, 2002, 364, 547-554.	1.7	33
63	Expression of Klf9 and Klf13 in mouse development. Mechanisms of Development, 2001, 103, 149-151.	1.7	36
64	Effects of premature stimulation on HERG K + channels. Journal of Physiology, 2001, 537, 843-851.	1.3	76
65	Effects of premature stimulation on HERG K+ channels. Journal of Physiology, 2001, 537, 843-851.	1.3	95
66	Four isoforms of serum response factor that increase or inhibit smooth-muscle-specific promoter activity. Biochemical Journal, 2000, 345, 445.	1.7	19
67	Four isoforms of serum response factor that increase or inhibit smooth-muscle-specific promoter activity. Biochemical Journal, 2000, 345, 445-451.	1.7	47
68	Mouse BTEB3, a new member of the basic transcription element binding protein (BTEB) family, activates expression from GC-rich minimal promoter regions. Biochemical Journal, 2000, 345, 529-533.	1.7	33
69	<i>Nov</i> Gene Encodes Adhesion Factor for Vascular Smooth Muscle Cells and Is Dynamically Regulated in Response to Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1912-1919.	1.1	60
70	Mouse BTEB3, a new member of the basic transcription element binding protein (BTEB) family, activates expression from GC-rich minimal promoter regions. Biochemical Journal, 2000, 345, 529.	1.7	14
71	Stretch-induced alternative splicing of serum response factor promotes bronchial myogenesis and is defective in lung hypoplasia. Journal of Clinical Investigation, 2000, 106, 1321-1330.	3.9	108
72	Genetic control of the circulating concentration of transforming growth factor type beta1. Human Molecular Genetics, 1999, 8, 93-97.	1.4	656

#	Article	IF	CITATIONS
73	Expression of Basic Helix-Loop-Helix Proteins and Smooth Muscle Phenotype in the Adult Rat Aorta. Developments in Cardiovascular Medicine, 1999, , 237-244.	0.1	0
74	Molecular cloning of the human HAND2 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 393-399.	2.4	20
75	Expression and distribution of transforming growth factor- \hat{l}^2 isoforms and their signaling receptors in growing human bone. Bone, 1998, 23, 95-102.	1.4	132
76	Loss of a consensus heparin binding site by alternative splicing of latent transforming growth factor- \hat{l}^2 binding protein-1. FEBS Letters, 1998, 425, 281-285.	1.3	32
77	Expression of alternatively spliced human latent transforming growth factor \hat{l}^2 binding protein-1. FEBS Letters, 1998, 435, 143-148.	1.3	22
78	Transforming growth factor- \hat{l}^21 gene polymorphisms and coronary artery disease. Clinical Science, 1998, 95, 659-667.	1.8	127
79	Distribution of platelet-derived growth factor (PDGF) a chain mRNA, protein, and PDGF-α receptor in rapidly forming human bone. Bone, 1996, 19, 353-362.	1.4	62
80	The serum concentration of active transforming growth factor \hat{l}^2 is severely depressed in advanced atherosclerosis. Nature Medicine, 1995, 1, 74-79.	15.2	391
81	Active and acid-activatable TGF- \hat{l}^2 in human sera, platelets and plasma. Clinica Chimica Acta, 1995, 235, 11-31.	0.5	103
82	ID - A dominant negative regulator of skeletal muscle differentiation - is not involved in maturation or differentiation of vascular smooth muscle cells. FEBS Letters, 1995, 368, 81-86.	1.3	8
83	Activation of transforming growth factor- \hat{l}^2 is inhibited in transgenic apolipoprotein(a) mice. Nature, 1994, 370, 460-462.	13.7	375
84	Inhibition of PDGF BB stimulated DNA synthesis in rat aortic vascular smooth muscle cells by the expression of a truncated PDGF \hat{l}^2 receptor. FEBS Letters, 1993, 336, 119-123.	1.3	3