
Peng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904718/publications.pdf Version: 2024-02-01

DENC LIANC

#	Article	IF	CITATIONS
1	Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO ₂ Methanation. Journal of the American Chemical Society, 2022, 144, 12807-12815.	13.7	74
2	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie - International Edition, 2021, 60, 6170-6176.	13.8	236
3	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie, 2021, 133, 6235-6241.	2.0	22
4	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	13.8	445
5	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	2.0	44
6	Fe ₁ N ₄ –O ₁ site with axial Fe–O coordination for highly selective CO ₂ reduction over a wide potential range. Energy and Environmental Science, 2021, 14, 3430-3437.	30.8	119
7	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	13.8	275
8	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	2.0	32
9	<scp>MOFsâ€Derived Nâ€Doped Carbonâ€Encapsulated</scp> Metal/Alloy Electrocatalysts to Tune the Electronic Structure and Reactivity of Carbon Active Sites ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2626-2637.	4.9	18
10	Lewisâ€Basic EDTA as a Highly Active Molecular Electrocatalyst for CO 2 Reduction to CH 4. Angewandte Chemie, 2021, 133, 23184.	2.0	11
11	Lewisâ€Basic EDTA as a Highly Active Molecular Electrocatalyst for CO ₂ Reduction to CH ₄ . Angewandte Chemie - International Edition, 2021, 60, 23002-23009.	13.8	33
12	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie, 2021, 133, 23806-23810.	2.0	22
13	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	13.8	197
14	Tuning the pâ€Orbital Electron Structure of sâ€Block Metal Ca Enables a Highâ€Performance Electrocatalyst for Oxygen Reduction. Advanced Materials, 2021, 33, e2107103.	21.0	71
15	Mn-Doped RuO ₂ Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catalysis, 2020, 10, 1152-1160.	11.2	302
16	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	5.6	17
17	Hexagonal Perovskite Ba _{0.9} Sr _{0.1} Co _{0.8} Fe _{0.1} Ir _{0.1} O _{3â^îî} as an Efficient Electrocatalyst towards the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020. 3. 7149-7158.	5.1	32
18	Facile fabrication of Ir/CNT/rGO nanocomposites with enhanced electrocatalytic performance for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3288-3292.	4.9	16

Peng Jiang

#	Article	IF	CITATIONS
19	Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cmâ^'2. Applied Catalysis B: Environmental, 2019, 258, 117965.	20.2	46
20	The Enhancement of the Catalytic Oxidation of CO on Ir/CeO ₂ Nanojunctions. Inorganic Chemistry, 2019, 58, 14238-14243.	4.0	17
21	Dual Graphiticâ€N Doping in a Sixâ€Membered Câ€Ring of Grapheneâ€Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16973-16980.	13.8	54
22	Dual Graphiticâ€N Doping in a Sixâ€Membered Câ€Ring of Grapheneâ€Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 17129-17136.	2.0	7
23	Oxygen/Fluorine Dualâ€Doped Porous Carbon Nanopolyhedra Enabled Ultrafast and Highly Stable Potassium Storage. Advanced Functional Materials, 2019, 29, 1906126.	14.9	123
24	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	10.3	36
25	Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12317-12324.	10.3	110
26	Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridiumâ€Cobalt Alloy Core Encapsulated in Nitrogenâ€Doped Carbon Cages. Advanced Materials, 2018, 30, 1705324.	21.0	211
27	Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 3295-3304.	8.0	78
28	Incorporation of Cu–N _x cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale, 2018, 10, 21076-21086.	5.6	47
29	Ultrasmall Ru/Cuâ€doped RuO ₂ Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2018, 14, e1803009.	10.0	151
30	Tuning the Electronic Structure of Se via Constructing Rh-MoSe ₂ Nanocomposite to Generate High-Performance Electrocatalysis for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 9137-9144.	6.7	32
31	Metallic 1T phase MoS ₂ nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 12613-12622.	10.3	46
32	Oâ€, Nâ€Atomsâ€Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts. Advanced Materials, 2018, 30, e1801732.	21.0	239
33	Core–Shell Structurized Fe ₃ O ₄ @C@MnO ₂ Nanoparticles as pH Responsive T ₁ -T ₂ * Dual-Modal Contrast Agents for Tumor Diagnosis. ACS Biomaterials Science and Engineering, 2018, 4, 3047-3054.	5.2	28
34	Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. Journal of Materials Chemistry A, 2018, 6, 13254-13262.	10.3	156
35	Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. ACS Applied Materials & Interfaces, 2017, 9, 3596-3601.	8.0	126
36	MOF-derived RuO ₂ /Co ₃ O ₄ heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Advances, 2017, 7, 3686-3694.	3.6	116

Peng Jiang

#	Article	IF	CITATIONS
37	Pt-like electrocatalytic behavior of Ru–MoO ₂ nanocomposites for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 5475-5485.	10.3	213
38	A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. Journal of Materials Chemistry A, 2017, 5, 10321-10327.	10.3	98
39	Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nature Communications, 2017, 8, 14969.	12.8	656
40	Vertically porous Ni(OH) 2 /Ni thin film on carbon cloth for high performance flexible supercapacitors. Materials Letters, 2017, 190, 20-23.	2.6	14
41	Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal–Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 32106-32113.	8.0	48
42	Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance. Journal of Colloid and Interface Science, 2017, 490, 252-258.	9.4	28
43	Self-assembly of trithia-9-crown-3 and octathia-24-crown-8 on Au(111) surfaces. RSC Advances, 2016, 6, 81726-81730.	3.6	0
44	Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 13378-13383.	8.0	103
45	Co ₃ ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 9204-9212.	10.3	154
46	Free-standing porous Manganese dioxide/graphene composite films for high performance supercapacitors. Journal of Colloid and Interface Science, 2015, 437, 304-310.	9.4	41
47	Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices. Materials, 2013, 6, 5094-5117.	2.9	82
48	The Effect of A-Site Substitution of Ce and La on the Magnetic and Electronic Properties of Sr(Ti _{0.6} Fe _{0.4})O _{3â^Î} Films. Inorganic Chemistry, 2012, 51, 13245-13253.	4.0	14
49	On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photonics, 2011, 5, 758-762.	31.4	766
50	p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biology, 2011, 13, 310-316.	10.3	620
51	Enhancement of the magneto-optical performance of Sr(Ti0.6â^xGaxFe0.4)O3 perovskite films by Ga substitution. Applied Physics Letters, 2011, 98, 231909.	3.3	10
52	p53 and Bad: remote strangers become close friends. Cell Research, 2007, 17, 283-285.	12.0	35