James M Tuck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904448/publications.pdf Version: 2024-02-01

IAMES M TUCK

#	Article	IF	CITATIONS
1	BBB: Simplifying Persistent Programming using Battery-Backed Buffers. , 2021, , .		18
2	DNA stability: a central design consideration for DNA data storage systems. Nature Communications, 2021, 12, 1358.	12.8	81
3	Promiscuous molecules for smarter file operations in DNA-based data storage. Nature Communications, 2021, 12, 3518.	12.8	19
4	Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory. , 2021, ,		4
5	The Case for Domain-Specialized Branch Predictors for Graph-Processing. IEEE Computer Architecture Letters, 2020, 19, 101-104.	1.5	2
6	WET: Write Efficient Loop Tiling for Non-Volatile Main Memory. , 2020, , .		3
7	Dynamic and scalable DNA-based information storage. Nature Communications, 2020, 11, 2981.	12.8	52
8	Efficient Checkpointing with Recompute Scheme for Non-volatile Main Memory. Transactions on Architecture and Code Optimization, 2019, 16, 1-27.	2.0	10
9	Driving the Scalability of DNA-Based Information Storage Systems. ACS Synthetic Biology, 2019, 8, 1241-1248.	3.8	56
10	Dynamic modelling of the iron deficiency modulated transcriptome response in Arabidopsis thaliana roots. In Silico Plants, 2019, 1, .	1.9	6
11	Lazy Persistency: A High-Performing and Write-Efficient Software Persistency Technique. , 2018, , .		26
12	Hardware Supported Permission Checks on Persistent Objects for Performance and Programmability. , 2018, , .		6
13	Hiding the Long Latency of Persist Barriers Using Speculative Execution. , 2017, , .		41
14	Characterizing the impact of soft errors across microarchitectural structures and implications for predictability. , 2017, , .		4
15	Hiding the Long Latency of Persist Barriers Using Speculative Execution. Computer Architecture News, 2017, 45, 175-186.	2.5	4
16	Lightweight runtime checking of C programs with RTC. Computer Languages, Systems and Structures, 2016, 45, 191-203.	1.4	1
17	Computing in 3D. , 2015, , .		5

18 Computing in 3D. , 2015, , .

JAMES M TUCK

#	Article	IF	CITATIONS
19	Control-Flow Decoupling: An Approach for Timely, Non-Speculative Branching. IEEE Transactions on Computers, 2015, 64, 2182-2203.	3.4	8
20	Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response. PLoS ONE, 2015, 10, e0136591.	2.5	13
21	Control-Flow Decoupling. , 2012, , .		12
22	Automatic parallelization of fine-grained meta-functions on a chip multiprocessor. , 2011, , .		3
23	MMT: Exploiting fine-grained parallelism in dynamic memory management. , 2010, , .		16
24	SoftSig: Software-Exposed Hardware Signatures for Code Analysis and Optimization. IEEE Micro, 2009, 29, 84-95.	1.8	1
25	The Bulk Multicore architecture for improved programmability. Communications of the ACM, 2009, 52, 58-65.	4.5	122
26	SoftSig. , 2008, , .		21
27	SoftSig. Operating Systems Review (ACM), 2008, 42, 145-156.	1.9	1
28	BulkSC. , 2007, , .		199
29	Bulk Disambiguation of Speculative Threads in Multiprocessors. Computer Architecture News, 2006, 34, 227-238.	2.5	80
30	DINOS: Data INspired Oligo Synthesis for DNA Data Storage. ACM Journal on Emerging Technologies in Computing Systems, 0, , .	2.3	2