Xiao-Wei Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1904434/xiao-wei-zhang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 198
 7,247
 47
 77

 papers
 citations
 h-index
 g-index

 210
 8,685
 7.8
 5.9

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
198	Where less may be more: how the rare biosphere pulls ecosystems strings. <i>ISME Journal</i> , 2017 , 11, 853-	862 .9	460
197	Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. <i>Environmental Science & Environmental & Enviro</i>	10.3	295
196	Occurrence of organophosphate flame retardants in drinking water from China. <i>Water Research</i> , 2014 , 54, 53-61	12.5	199
195	Future water quality monitoringadapting tools to deal with mixtures of pollutants in water resource management. <i>Science of the Total Environment</i> , 2015 , 512-513, 540-551	10.2	198
194	Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants?. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 7536-42	10.3	196
193	Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. <i>Aquatic Toxicology</i> , 2010 , 98, 256-264	5.1	184
192	Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. <i>Reproductive Toxicology</i> , 2011 , 31, 409-17	3.4	168
191	Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. <i>Marine Pollution Bulletin</i> , 2011 , 63, 179-88	6.7	156
190	The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management. <i>Science of the Total Environment</i> , 2015 , 503-504, 22-31	10.2	149
189	Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. <i>Chemosphere</i> , 2013 , 93, 1887-95	8.4	143
188	Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. <i>Toxicological Sciences</i> , 2004 , 81, 78-89	4.4	140
187	Real-time PCR array to study effects of chemicals on the Hypothalamic-Pituitary-Gonadal axis of the Japanese medaka. <i>Aquatic Toxicology</i> , 2008 , 88, 173-82	5.1	112
186	Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. <i>Aquatic Toxicology</i> , 2013 , 128-129, 147-57	5.1	102
185	Bisphenol A disrupts steroidogenesis in human H295R cells. <i>Toxicological Sciences</i> , 2011 , 121, 320-7	4.4	99
184	Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka. <i>Environmental Science & Eamp; Technology</i> , 2010 , 44, 8729-35	10.3	94
183	Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. <i>Environmental Pollution</i> , 2018 , 241, 484-493	9.3	93
182	Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. <i>Environmental Science & Enp.</i> Technology, 2011 , 45, 769-75	10.3	91

(2005-2005)

181	Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. <i>Environmental Science & Environmental Science & Environment</i>	10.3	91	
180	Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol. <i>Aquatic Toxicology</i> , 2012 , 106-107, 173-81	5.1	88	
179	Adverse outcome pathway networks I: Development and applications. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1723-1733	3.8	87	
178	Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters. <i>Environmental Science & Environmental Science & Environment</i>	10.3	83	
177	Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2010 , 1217, 506-13	4.5	83	
176	Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	82	
175	Non-Target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in China. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	77	
174	Solution by dilution?A review on the pollution status of the Yangtze River. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6934-71	5.1	76	
173	Responses of the medaka HPG axis PCR array and reproduction to prochloraz and ketoconazole. <i>Environmental Science & Environmental Science & Environme</i>	10.3	76	
172	The H295R system for evaluation of endocrine-disrupting effects. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 65, 293-305	7	76	
171	Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. <i>Environmental Science & Environmental Science & Envir</i>	10.3	75	
170	Omics Advances in Ecotoxicology. <i>Environmental Science & Ecotomology</i> , 2018 , 52, 3842-3851	10.3	71	
169	Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line. <i>Chemosphere</i> , 2010 , 80, 578-84	8.4	70	
168	Using in situ bacterial communities to monitor contaminants in river sediments. <i>Environmental Pollution</i> , 2016 , 212, 348-357	9.3	69	
167	Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. <i>Environmental Science & Environmental Science & Environ</i>	10.3	68	
166	Adverse outcome pathway networks II: Network analytics. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1734-1748	3.8	67	
165	Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach. <i>Scientific Reports</i> , 2016 , 6, 23963	4.9	67	
164	Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China. Marine Pollution Bulletin, 2005 , 50, 1036-49	6.7	65	

163	A critical review of synthetic chemicals in surface waters of the US, the EU and China. <i>Environment International</i> , 2019 , 131, 104994	12.9	57
162	Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio). <i>Environmental Science & Environmental Science & Environmen</i>	10.3	56
161	Dietary intake of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) from fish and meat by residents of Nanjing, China. <i>Environment International</i> , 2012 , 42, 138-43	12.9	54
160	Ecogenomics of Zooplankton Community Reveals Ecological Threshold of Ammonia Nitrogen. <i>Environmental Science & Environmental </i>	10.3	53
159	Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds. <i>Toxicology and Applied Pharmacology</i> , 2007 , 225, 142-53	4.6	52
158	Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta. <i>Environment International</i> , 2012 , 42, 117-23	12.9	51
157	Effects of sulfathiazole, oxytetracycline and chlortetracycline on steroidogenesis in the human adrenocarcinoma (H295R) cell line and freshwater fish Oryzias latipes. <i>Journal of Hazardous Materials</i> , 2010 , 182, 494-502	12.8	51
156	Assessing the toxicity of naphthenic acids using a microbial genome wide live cell reporter array system. <i>Environmental Science & Environmental Scien</i>	10.3	50
155	Identification of trace organic pollutants in freshwater sources in Eastern China and estimation of their associated human health risks. <i>Ecotoxicology</i> , 2011 , 20, 1099-106	2.9	49
154	Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. <i>Chemosphere</i> , 2019 , 217, 790-799	8.4	48
153	Assessment of chemical effects on aromatase activity using the H295R cell line. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 1137-48	5.1	47
152	Effects of PCBs and MeSO2-PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells. <i>Chemosphere</i> , 2006 , 63, 772-84	8.4	47
151	Elevated CO levels modify TiO nanoparticle effects on rice and soil microbial communities. <i>Science of the Total Environment</i> , 2017 , 578, 408-416	10.2	46
150	Dioxin-like potency of HO- and MeO- analogues of PBDEsSthe potential risk through consumption of fish from eastern China. <i>Environmental Science & Environmental Science & Env</i>	10.3	46
149	A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part Ihultiple biomarkers in rainbow trout. <i>Journal of Soils and Sediments</i> , 2010 , 10, 1347-1361	3.4	46
148	Advancing the adverse outcome pathway framework-An international horizon scanning approach. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1411-1421	3.8	45
147	Time-dependent transcriptional profiles of genes of the hypothalamic-pituitary-gonadal axis in medaka (Oryzias latipes) exposed to fadrozole and 17beta-trenbolone. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2504-11	3.8	43
146	Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate. <i>Aquatic Toxicology</i> , 2014 , 150, 175-81	5.1	42

(2011-2017)

145	Responses of earthworms and microbial communities in their guts to Triclosan. <i>Chemosphere</i> , 2017 , 168, 1194-1202	8.4	39
144	Production of reactive oxygen species and 8-hydroxy-25deoxyguanosine in KB cells co-exposed to benzo[a]pyrene and UV-A radiation. <i>Chemosphere</i> , 2004 , 55, 1303-8	8.4	39
143	Mechanisms of toxicity of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) determined by toxicogenomic analysis with a live cell array coupled with mutagenesis in Escherichia coli. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	38
142	Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). <i>Scientific Reports</i> , 2016 , 6, 33350	4.9	37
141	Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in E. coli. <i>Environmental Science & Environmental</i> (2012), 46, 1185-91	10.3	37
140	Predicting chemical impacts on vertebrate endocrine systems. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 39-51	3.8	35
139	Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening. <i>Environmental Science & Environmental </i>	10.3	35
138	Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China, 2009-2012. <i>Chemosphere</i> , 2014 , 114, 340-6	8.4	34
137	Zooplankton Community Profiling in a Eutrophic Freshwater Ecosystem-Lake Tai Basin by DNA Metabarcoding. <i>Scientific Reports</i> , 2017 , 7, 1773	4.9	34
136	In vitro profiling of endocrine disrupting potency of 2,2\$4,4Stetrabromodiphenyl ether (BDE47) and related hydroxylated analogs (HO-PBDEs). <i>Marine Pollution Bulletin</i> , 2011 , 63, 287-96	6.7	34
135	Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: targeting the cAMP signalling cascade. <i>Toxicology and Applied Pharmacology</i> , 2010 , 247, 222-8	4.6	34
134	Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 332-43	5.1	34
133	A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test. <i>Environmental Science & Environmental Science & Envir</i>	10.3	34
132	Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types. <i>Chemosphere</i> , 2017 , 172, 201-209	8.4	32
131	eDNA-based bioassessment of coastal sediments impacted by an oil spill. <i>Environmental Pollution</i> , 2018 , 238, 739-748	9.3	32
130	Monitoring of non-destructive sampling strategies to assess the exposure of avian species in Jiangsu Province, China to heavy metals. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 2898-5	90 ⁶ 1	32
129	Effects of Eendosulfan on the growth and reproduction of zebrafish (Danio rerio). <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2525-31	3.8	32
128	Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. <i>Toxicology</i> , 2011 , 282, 146-53	4.4	32

127	Toxicity and multigenerational effects of bisphenol S exposure to on developmental, biochemical, reproductive and oxidative stress. <i>Toxicology Research</i> , 2019 , 8, 630-640	2.6	30
126	Benchmarking Water Quality from Wastewater to Drinking Waters Using Reduced Transcriptome of Human Cells. <i>Environmental Science & Environmental Scien</i>	10.3	30
125	Bioanalytical and instrumental analysis of thyroid hormone disrupting compounds in water sources along the Yangtze River. <i>Environmental Pollution</i> , 2011 , 159, 441-8	9.3	30
124	Influence of blooms of phytoplankton on concentrations of hydrophobic organic chemicals in sediments and snails in a hyper-eutrophic, freshwater lake. <i>Water Research</i> , 2017 , 113, 22-31	12.5	29
123	Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. <i>Oikos</i> , 2020 , 129, 607-618	4	29
122	Effects of HO-/MeO-PBDEs on androgen receptor: in vitro investigation and helix 12-involved MD simulation. <i>Environmental Science & Environmental Environm</i>	10.3	27
121	Photodegradation of carbon dots cause cytotoxicity. <i>Nature Communications</i> , 2021 , 12, 812	17.4	27
120	Identification of Thyroid Hormone Disruptors among HO-PBDEs: In Vitro Investigations and Coregulator Involved Simulations. <i>Environmental Science & Environmental Science & En</i>	10.3	26
119	Endocrine effects of methoxylated brominated diphenyl ethers in three in vitro models. <i>Marine Pollution Bulletin</i> , 2011 , 62, 2356-61	6.7	26
118	Organochlorines and dioxin-like compounds in green-lipped mussels Perna viridis from Hong Kong mariculture zones. <i>Marine Pollution Bulletin</i> , 2005 , 51, 677-87	6.7	26
117	Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. <i>Environmental Science & Environmental Environmen</i>	10.3	26
116	Bioassay-directed identification of organic toxicants in water and sediment of Tai Lake, China. Water Research, 2015 , 73, 231-41	12.5	25
115	Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio). <i>Chemosphere</i> , 2015 , 120, 31-6	8.4	24
114	Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption. <i>Aquatic Toxicology</i> , 2014 , 155, 62-72	5.1	24
113	Environmental DNA Shaping a New Era of Ecotoxicological Research. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 5605-5612	10.3	23
112	Effects of subchronic exposure of early life stages of white sturgeon (Acipenser transmontanus) to copper, cadmium, and zinc. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2497-505	3.8	23
111	Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes). <i>Toxicology and Applied Pharmacology</i> , 2008 , 232, 226-35	4.6	23
110	Ecogenomic responses of benthic communities under multiple stressors along the marine and adjacent riverine areas of northern Bohai Sea, China. <i>Chemosphere</i> , 2017 , 172, 166-174	8.4	22

109	Water quality guidelines for chemicals: learning lessons to deliver meaningful environmental metrics. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 6-16	5.1	22
108	Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish. <i>Environmental Pollution</i> , 2015 , 205, 145-52	9.3	21
107	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 1485-1505	3.8	21
106	p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. <i>International Journal of Biological Macromolecules</i> , 2017 , 105, 228-237	7.9	21
105	A comparison of statistical methods for deriving freshwater quality criteria for the protection of aquatic organisms. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 159-67	5.1	21
104	Causes of endocrine disrupting potencies in surface water in East China. <i>Chemosphere</i> , 2016 , 144, 1435-	424	21
103	Environmental DNA Metabarcoding Supporting Community Assessment of Environmental Stressors in a Field-Based Sediment Microcosm Study. <i>Environmental Science & Environmental & Environ</i>	10.3	21
102	Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 690-702	3.8	20
101	Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China. <i>Environmental Science & Environmental Science & Environme</i>	10.3	20
100	eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. <i>Environment International</i> , 2020 , 134, 105230	12.9	20
99	Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. <i>Environment International</i> , 2020 , 135, 105307	12.9	20
98	Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. <i>Frontiers in Microbiology</i> , 2018 , 9, 3248	5.7	20
97	Bioavailability-based assessment of aryl hydrocarbon receptor-mediated activity in Lake Tai Basin from Eastern China. <i>Science of the Total Environment</i> , 2016 , 544, 987-94	10.2	19
96	Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides. <i>Environmental Science & Environmental Science & E</i>	10.3	19
95	Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos. <i>Aquatic Toxicology</i> , 2012 , 118-119, 108-115	5.1	19
94	Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis: mRNA expression. <i>Chemosphere</i> , 2013 , 93, 2327-	3 ⁸ 2 ⁴	18
93	Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 17434-42	5.1	18
92	Chemical-, site-, and taxa-dependent benthic community health in coastal areas of the Bohai Sea and northern Yellow Sea: A sediment quality triad approach. <i>Science of the Total Environment</i> , 2018 , 645, 743-752	10.2	17

91	Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 234-43	5.1	17
90	Heavy metals in seawater, sediments, and biota from the coastal area of Yancheng City, China. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1697-704	3.8	16
89	Detecting copper toxicity in sediments: from the subindividual level to the population level. <i>Journal of Applied Ecology</i> , 2017 , 54, 1331-1342	5.8	16
88	Advanced fluorescence in situ hybridization to localize and quantify gene expression in Japanese medaka (Oryzias latipes) exposed to endocrine-disrupting compounds. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1951-62	3.8	16
87	Structures of Endocrine-Disrupting Chemicals Determine Binding to and Activation of the Estrogen Receptor and Androgen Receptor. <i>Environmental Science & Endocrine</i> , 2020, 54, 11424-11433	10.3	16
86	In situ microbiota distinguished primary anthropogenic stressor in freshwater sediments. <i>Environmental Pollution</i> , 2018 , 239, 189-197	9.3	15
85	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. <i>Chemosphere</i> , 2016 , 144, 1754-62	8.4	15
84	Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 803-11	5.1	15
83	Endocrine disruption effects of 2,2\$4,4\$6-pentabromodiphenylether (BDE100) in reporter gene assays. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 850-4		15
82	Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China. <i>Chemosphere</i> , 2017 , 168, 390-398	8.4	14
81	A Tiered Approach for Screening and Assessment of Environmental Mixtures by Omics and Assays. <i>Environmental Science & Environmental &</i>	10.3	14
80	Toxicogenomic Assessment of 6-OH-BDE47-Induced Developmental Toxicity in Chicken Embryos. <i>Environmental Science & Embryos</i> , 2016 , 50, 12493-12503	10.3	14
79	Dioxin-like activity in sediments from Tai Lake, China determined by use of the H4IIE-luc bioassay and quantification of individual AhR agonists. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 1480-8	5.1	14
78	Environmental risk assessment of polycyclic musks HHCB and AHTN in consumer product chemicals in China. <i>Science of the Total Environment</i> , 2017 , 599-600, 771-779	10.2	13
77	Phthalate Esters on Hands of Office Workers: Estimating the Influence of Touching Surfaces. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 1-5	11	13
76	Sensitive community responses of microbiota to copper in sediment toxicity test. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 599-608	3.8	13
75	Impairment of reproduction of adult zebrafish (Danio rerio) by binary mixtures of environmentally relevant concentrations of triclocarban and inorganic mercury. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 134P1, 124-132	7	13
74	Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 10406-10414	5.1	13

(2015-2017)

.2	12 12 12
.2	12
	12
.3	
	11
.9	11
.9	11
.9	11
}	11
.3	11
ļ	11
-	11
	10
.3	10
	10
ļ	10
l.	9
2 8 0 4	2.9

55	Human activitiesSfingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. <i>Global Change Biology</i> , 2020 , 26, 6867-6879	11.4	9
54	Risk assessment of chlorantraniliprole pesticide use in rice-crab coculture systems in the basin of the lower reaches of the Yangtze River in China. <i>Chemosphere</i> , 2019 , 230, 440-448	8.4	7
53	A meeting framework for inclusive and sustainable science. <i>Nature Ecology and Evolution</i> , 2020 , 4, 668-6	6 71 .3	7
52	Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid. <i>Chemosphere</i> , 2016 , 158, 72-9	8.4	7
51	Oral Exposure to 1,4-Dioxane Induces Hepatic Inflammation in Mice: The Potential Promoting Effect of the Gut Microbiome. <i>Environmental Science & Environmental Science & Envi</i>	10.3	7
50	Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 14, S3	3.6	6
49	Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds. <i>Toxicology and Applied Pharmacology</i> , 2009 , 234, 306-13	4.6	6
48	Hepatic P450 enzyme activity, tissue morphology and histology of mink (Mustela vison) exposed to polychlorinated dibenzofurans. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 57, 416-2	23 ^{.2}	6
47	3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors. <i>Bulletin of the Korean Chemical Society</i> , 2013 , 34, 2387-2393	1.2	6
46	Concentration-dependent transcriptome of zebrafish embryo for environmental chemical assessment. <i>Chemosphere</i> , 2020 , 245, 125632	8.4	6
45	Directly imaging the structureproperty correlation of perovskites in crystalline microwires. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13305-13314	13	5
44	Mechanistic in silico modeling of bisphenols to predict estrogen and glucocorticoid disrupting potentials. <i>Science of the Total Environment</i> , 2020 , 728, 138854	10.2	5
43	Qualitative and quantitative simulation of androgen receptor antagonists: A case study of polybrominated diphenyl ethers. <i>Science of the Total Environment</i> , 2017 , 603-604, 495-501	10.2	5
42	Modulation of estrogen synthesis through activation of protein kinase A in H295R cells by extracts of estuary sediments. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2793-801	3.8	5
41	Bisphenol S increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans. <i>Food Chemistry</i> , 2021 , 339, 127813	8.5	5
40	Down-Regulation of hspb9 and hspb11 Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. <i>Environmental Science & amp; Technology</i> , 2018 , 52, 12829-12840	10.3	5
39	Structures of Endocrine-Disrupting Chemicals Correlate with the Activation of 12 Classic Nuclear Receptors. <i>Environmental Science & Environmental Sci</i>	10.3	5
38	Integrated assessment of west coast of South Korea by use of benthic bacterial community structure as determined by eDNA, concentrations of contaminants, and in vitro bioassays. <i>Environment International</i> , 2020 , 137, 105569	12.9	4

(2021-2018)

37	Functional genomics assessment of narcotic and specific acting chemical pollutants using E.lcoli. <i>Environmental Pollution</i> , 2018 , 232, 146-153	9.3	4
36	Relative potencies of aroclor mixtures derived from avian in vitro bioassays: comparisons with calculated toxic equivalents. <i>Environmental Science & Environmental Science & </i>	10.3	4
35	Biochemical responses and DNA damage in red sea bream from coastal Fujian Province, China. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 1526-35	7	4
34	Biological analysis of endocrine-disrupting chemicals in animal meats from the Pearl River Delta, China. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2012 , 22, 93-100	6.7	4
33	Early Life Stage Bioactivity Assessment of Short-Chain Chlorinated Paraffins at Environmentally Relevant Concentrations by Concentration-Dependent Transcriptomic Analysis of Zebrafish Embryos. <i>Environmental Science & Embryos. Environmental Science & Embryos. Environmental Science & Embryos. Environmental Science & Environmental Science & Embryos. Environmental Science & Embryos. Environmental Science & Embryos. Environmental Science & Embryos. Environmental E</i>	10.3	4
32	Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. <i>Environmental Research</i> , 2021 , 194, 110679	7.9	4
31	A qPCR method to quantify bioavailable phosphorus using indigenous aquatic species. <i>Environmental Sciences Europe</i> , 2018 , 30, 32	5	4
30	Evidence-based assessment on environmental mixture using a concentration-dependent transcriptomics approach. <i>Environmental Pollution</i> , 2020 , 265, 114839	9.3	3
29	Signal transduction disturbance related to hepatocarcinogenesis in mouse by prolonged exposure to Nanjing drinking water. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6468-81	5.1	3
28	Functional genomic assessment of 2, 2-bis (bromomethyl)-1, 3-propanediol induced cytotoxicity in a single-gene knockout library of E.lcoli. <i>Chemosphere</i> , 2017 , 185, 582-588	8.4	3
27	Incidence of jaw lesions and activity and gene expression of hepatic P4501A enzymes in mink (Mustela vison) exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran. <i>Environmental Toxicology</i>	3.8	3
26	and Chemistry, 2012 , 31, 2545-56 Polychlorinated Diphenyl Sulfides: An Emerging Class of Persistent, Bioaccumulative, and Toxic Substances in the Environment. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2657-2666	3.8	3
25	Elevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with rice. <i>PLoS ONE</i> , 2018 , 13, e0196439	3.7	3
24	eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. <i>Environmental Research</i> , 2021 , 201, 111602	7.9	3
23	An in situ toxicity identification and evaluation water analysis system: Laboratory validation. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1636-1643	3.8	2
22	Searching for novel modes of toxic actions of oil spill using E. Leoli live cell array reporter system - A Hebei Spirit oil spill study. <i>Chemosphere</i> , 2017 , 169, 669-677	8.4	2
21	Using and Machine Learning Approaches to Determine Species-Specific Dioxin-like Potency and Congener-Specific Relative Sensitivity among Birds for Brominated Dioxin Analogues. <i>Environmental Science & Environmental Science</i>	10.3	2
20	eDNA biomonitoring revealed the ecological effects of water diversion projects between Yangtze River and Tai Lake <i>Water Research</i> , 2021 , 210, 117994	12.5	2

19	Dose-Dependent Transcriptomic Approach for Mechanistic Screening in Chemical Risk Assessment 2020 , 33-56		2
18	Biodirected Identification of Untargeted Toxicants in Industrial Wastewater Guides the Upgrading of Water Treatments. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 474-481	11	2
17	Bisphenol S promotes fat storage in multiple generations of Caenorhabditis elegans in a daf-16/nhr-49 dependent manner. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2021 , 250, 109175	3.2	2
16	One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste <i>Environmental Sciences Europe</i> , 2022 , 34, 21	5	2
15	CRISPR screen identified that UGT1A9 was required for bisphenols-induced mitochondria dyshomeostasis. <i>Environmental Research</i> , 2021 , 205, 112427	7.9	1
14	Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. <i>Environment International</i> , 2021 , 159, 107009	12.9	1
13	Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. <i>Toxicology in Vitro</i> , 2020 , 69, 104998	3.6	1
12	Cross-Model Comparison of Transcriptomic Dose-Response of Short-Chain Chlorinated Paraffins. <i>Environmental Science & Environmental Science & Environm</i>	10.3	1
11	Relative sensitivities among avian species to individual and mixtures of aryl hydrocarbon receptor-active compounds. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1239-46	3.8	1
10	Identification of (anti-)androgenic activities and risks of sludges from industrial and domestic wastewater treatment plants. <i>Environmental Pollution</i> , 2021 , 268, 115716	9.3	1
9	Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. <i>Catalysts</i> , 2022 , 12, 487	4	1
8	Occurrence, partitioning, and bioaccumulation of an emerging class of PBT substances (polychlorinated diphenyl sulfides) in Chaohu Lake, Southeast China <i>Water Research</i> , 2022 , 218, 11849	8 ^{12.5}	1
7	Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae. <i>Toxicology in Vitro</i> , 2021 , 79, 105278	3.6	O
6	Gap analysis for DNA-based biomonitoring of aquatic ecosystems in China. <i>Ecological Indicators</i> , 2022 , 137, 108732	5.8	O
5	Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans <i>Chemosphere</i> , 2022 , 133977	8.4	O
4	Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model <i>Environmental Research</i> , 2022 , 210, 112906	7.9	O
3	Toxicology of water. <i>Exs</i> , 2012 , 101, 21-46		
2	CRISPR approach in environmental chemical screening focusing on population variability. <i>Journal of Toxicological Sciences</i> , 2021 , 46, 499-507	1.9	

LIST OF PUBLICATIONS

Adverse Outcome Pathway Network-Based Chemical Risk Assessment Using High-Throughput Transcriptomics **2022**, 307-324