Albina R Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904355/publications.pdf

Version: 2024-02-01

		430442	476904
35	905	18	29
papers	citations	h-index	g-index
36	36	36	1243
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria – Effects on phytoremediation strategies. Chemosphere, 2013, 92, 74-83.	4.2	141
2	Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Research, 2010, 44, 5032-5038.	5. 3	88
3	Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 2014, 21, 9742-9753.	2.7	76
4	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	4.1	72
5	Metal(loid)-Contaminated Soils as a Source of Culturable Heterotrophic Aerobic Bacteria for Remediation Applications. Geomicrobiology Journal, 2017, 34, 760-768.	1.0	44
6	Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. Journal of Environmental Management, 2012, 95, S269-S274.	3.8	42
7	Platelet Lysate-Loaded Photocrosslinkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology. ACS Biomaterials Science and Engineering, 2017, 3, 1359-1369.	2.6	34
8	Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecological Engineering, 2012, 43, 95-103.	1.6	28
9	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	1.7	27
10	Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis, 2010, 52, 125-131.	1.2	26
11	Reforestation of burned stands: The effect of ectomycorrhizal fungi on Pinus pinaster establishment. Soil Biology and Biochemistry, 2011, 43, 2115-2120.	4.2	26
12	Silkâ€Based Antimicrobial Polymers as a New Platform to Design Drugâ€Free Materials to Impede Microbial Infections. Macromolecular Bioscience, 2018, 18, e1800262.	2.1	24
13	Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water (Switzerland), 2019, 11, 1535.	1.2	23
14	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	4.1	22
15	Co-metabolic degradation of mono-fluorophenols by the ectomycorrhizal fungi Pisolithus tinctorius. Chemosphere, 2014, 111, 260-265.	4.2	20
16	Toward Spinning Greener Advanced Silk Fibers by Feeding Silkworms with Nanomaterials. ACS Sustainable Chemistry and Engineering, 2020, 8, 11872-11887.	3.2	20
17	Isolation and Characterization of Polymeric Galloyl-Ester-Degrading Bacteria from a Tannery Discharge Place. Microbial Ecology, 2005, 50, 550-556.	1.4	18
18	Diversity and Persistence of Ectomycorrhizal Fungi and Their Effect on Nursery-Inoculated Pinus pinaster in a Post-fire Plantation in Northern Portugal. Microbial Ecology, 2014, 68, 761-772.	1.4	18

#	Article	IF	Citations
19	Development and Characterization of Highly Stable Silver NanoParticles as Novel Potential Antimicrobial Agents for Wound Healing Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2161.	1.8	18
20	A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells. Advanced Healthcare Materials, 2021, 10, e2001692.	3.9	17
21	Mycorrhizal symbiosis affected by different genotypes of Pinus pinaster. Plant and Soil, 2012, 359, 245-253.	1.8	16
22	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 1066-1075.	2.9	13
23	Effect of diflubenzuron on the development of Pinus pinaster seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. Environmental Science and Pollution Research, 2013, 20, 582-590.	2.7	12
24	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	2.5	12
25	High Added-Value Compounds with Antibacterial Properties from Ginja Cherries By-products. Waste and Biomass Valorization, 2010, 1, 209-217.	1.8	11
26	Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. Forest Ecology and Management, 2014, 320, 50-55.	1.4	10
27	The response of Betula pubescens to inoculation with an ectomycorrhizal fungus and a plant growth promoting bacterium is substrate-dependent. Ecological Engineering, 2015, 81, 439-443.	1.6	9
28	Study of symptoms and gene expression in four <i>Pinus</i> species after pinewood nematode infection. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 272-275.	0.4	7
29	Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites. Spanish Journal of Agricultural Research, 2010, 8, 86.	0.3	7
30	Chitosan \hat{l}^2 -TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
31	Inoculation of Pinus pinea seedlings with Pisolithus tinctorius and Suillus bellinii promotes plant growth in benfluralin contaminated soil. Plant and Soil, 2015, 386, 113-123.	1.8	5
32	Unveiling the effect of threeâ€dimensional bioactive fibre mesh scaffolds functionalized with silanol groups on bacteria growth. Journal of Biomedical Materials Research - Part A, 2016, 104, 2189-2199.	2.1	5
33	Effect of benfluralin on Pinus pinea seedlings mycorrhized with Pisolithus tinctorius and Suillus bellinii – Study of plant antioxidant response. Chemosphere, 2015, 120, 422-430.	4.2	4
34	Spatial-Temporal Changes in Removal of Fecal Indicators and Diversity of Bacterial Communities in a Constructed Wetland with Ornamental Plants. Applied Sciences (Switzerland), 2021, 11, 3875.	1.3	3
35	Silk fibroin-spider silk-like protein biomaterials for preventing microbial infections. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0

3