Juan Valcarcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/190425/publications.pdf Version: 2024-02-01

	31976	27406
12,494	53	106
citations	h-index	g-index
132	132	13481
docs citations	times ranked	citing authors
	12,494 citations 132 docs citations	12,49453citationsh-index132132docs citationstimes ranked

ILIAN VALCARCEI

#	Article	IF	CITATIONS
1	Alternative pre-mRNA splicing: the logic of combinatorial control. Trends in Biochemical Sciences, 2000, 25, 381-388.	7.5	804
2	RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22, 185-198.	16.3	720
3	Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science, 1995, 268, 1173-1176.	12.6	526
4	Alternative splicing and genome complexity. Nature Genetics, 2002, 30, 29-30.	21.4	490
5	Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell, 2014, 156, 1324-1335.	28.9	482
6	Nucleosome positioning as a determinant of exon recognition. Nature Structural and Molecular Biology, 2009, 16, 996-1001.	8.2	406
7	Roles and mechanisms of alternative splicing in cancer — implications for care. Nature Reviews Clinical Oncology, 2020, 17, 457-474.	27.6	400
8	The spliceosome as a target of novel antitumour drugs. Nature Reviews Drug Discovery, 2012, 11, 847-859.	46.4	355
9	The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature, 1993, 362, 171-175.	27.8	316
10	Regulation of Fas Alternative Splicing by Antagonistic Effects of TIA-1 and PTB on Exon Definition. Molecular Cell, 2005, 19, 475-484.	9.7	307
11	RBM5, 6, and 10 Differentially Regulate NUMB Alternative Splicing to Control Cancer Cell Proliferation. Molecular Cell, 2013, 52, 720-733.	9.7	292
12	Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature, 1999, 402, 838-841.	27.8	262
13	Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Research, 2002, 30, 51e-51.	14.5	256
14	Interaction of U2AF65 RS Region with Pre-mRNA Branch Point and Promotion of Base Pairing with U2 snRNA. Science, 1996, 273, 1706-1709.	12.6	253
15	The Apoptosis-Promoting Factor TIA-1 Is a Regulator of Alternative Pre-mRNA Splicing. Molecular Cell, 2000, 6, 1089-1098.	9.7	252
16	U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction Genes and Development, 1997, 11, 1864-1872.	5.9	237
17	Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes and Development, 2011, 25, 445-459.	5.9	229
18	Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Research, 2016, 26, 732-744.	5.5	225

#	Article	IF	CITATIONS
19	The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends in Biochemical Sciences, 2016, 41, 33-45.	7.5	215
20	Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature, 2011, 475, 408-411.	27.8	202
21	The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends in Biochemical Sciences, 1996, 21, 296-301.	7.5	199
22	The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites. EMBO Journal, 2002, 21, 6882-6892.	7.8	198
23	Building specificity with nonspecific RNA-binding proteins. Nature Structural and Molecular Biology, 2005, 12, 645-653.	8.2	196
24	Post-transcriptional regulation: The dawn of PTB. Current Biology, 1997, 7, R705-R708.	3.9	178
25	CPEB1 coordinates alternative 3′-UTR formation with translational regulation. Nature, 2013, 495, 121-125.	27.8	156
26	RBM5/Luca-15/H37 Regulates Fas Alternative Splice Site Pairing after Exon Definition. Molecular Cell, 2008, 32, 81-95.	9.7	153
27	The Ewing Sarcoma Protein Regulates DNA Damage-Induced Alternative Splicing. Molecular Cell, 2011, 43, 353-368.	9.7	149
28	U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nature Structural and Molecular Biology, 2007, 14, 620-629.	8.2	147
29	The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO Journal, 2001, 20, 5748-5758.	7.8	145
30	Splicing Regulation at the Second Catalytic Step by Sex-lethal Involves 3′ Splice Site Recognition by SPF45. Cell, 2002, 109, 285-296.	28.9	140
31	Functional Splicing Network Reveals Extensive Regulatory Potential of the Core Spliceosomal Machinery. Molecular Cell, 2015, 57, 7-22.	9.7	140
32	Genome-wide Analysis of Alternative Pre-mRNA Splicing. Journal of Biological Chemistry, 2008, 283, 1229-1233.	3.4	129
33	The pathogenicity of splicing defects: mechanistic insights into pre― <scp>mRNA</scp> processing inform novel therapeutic approaches. EMBO Reports, 2015, 16, 1640-1655.	4.5	127
34	Intron Removal Requires Proofreading of U2AF/3' Splice Site Recognition by DEK. Science, 2006, 312, 1961-1965.	12.6	126
35	Targeting of U2AF65 to Sites of Active Splicing in the Nucleus. Journal of Cell Biology, 1997, 137, 975-987.	5.2	115
36	Isolated pseudo–RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2802-11.	7.1	109

#	Article	IF	CITATIONS
37	Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biology, 2016, 13, 466-472.	3.1	94
38	The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nature Communications, 2016, 7, 11558.	12.8	91
39	RNA splicing contributes to the generation of mature mRNAs of Borna disease virus, a non-segmented negative strand RNA virus. Virus Research, 1994, 34, 69-79.	2.2	88
40	hnRNP A1 Proofreads 3′ Splice Site Recognition by U2AF. Molecular Cell, 2012, 45, 314-329.	9.7	87
41	Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing. Cell, 2019, 176, 549-563.e23.	28.9	87
42	Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15622-15629.	7.1	86
43	Biochemical Function of Female-Lethal (2)D/Wilms' Tumor Suppressor-1-associated Proteins in Alternative Pre-mRNA Splicing. Journal of Biological Chemistry, 2003, 278, 3040-3047.	3.4	82
44	The expanding transcriptome: the genome as the â€~Book of Sand'. EMBO Journal, 2006, 25, 923-931.	7.8	78
45	Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1. Nucleic Acids Research, 2014, 42, 5949-5966.	14.5	77
46	Alternative Splicing Microarrays Reveal Functional Expression of Neuron-specific Regulators in Hodgkin Lymphoma Cells. Journal of Biological Chemistry, 2005, 280, 4779-4784.	3.4	76
47	Genome-Wide Identification of Fas/CD95 Alternative Splicing Regulators Reveals Links with Iron Homeostasis. Molecular Cell, 2015, 57, 23-38.	9.7	76
48	Dual Function for U2AF ³⁵ in AG-Dependent Pre-mRNA Splicing. Molecular and Cellular Biology, 2001, 21, 7673-7681.	2.3	73
49	Molecular mechanisms of gene expression regulation by the apoptosis-promoting protein TIA-1. , 2001, 6, 463-468.		71
50	Fas-activated Serine/Threonine Kinase (FAST K) Synergizes with TIA-1/TIAR Proteins to Regulate Fas Alternative Splicing. Journal of Biological Chemistry, 2007, 282, 1539-1543.	3.4	69
51	A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nature Ecology and Evolution, 2019, 3, 691-701.	7.8	63
52	Nuclear transport of influenza virus polymerase PA protein. Virus Research, 1992, 24, 65-75.	2.2	62
53	Regulation of FAS Exon Definition and Apoptosis by the Ewing Sarcoma Protein. Cell Reports, 2014, 7, 1211-1226.	6.4	62
54	Two Isoforms of the T-cell Intracellular Antigen 1 (TIA-1) Splicing Factor Display Distinct Splicing Regulation Activities. Journal of Biological Chemistry, 2007, 282, 19410-19417.	3.4	58

#	Article	IF	CITATIONS
55	Decrypting the genome's alternative messages. Current Opinion in Cell Biology, 2009, 21, 377-386.	5.4	55
56	Regulated M1 mRNA splicing in influenza virus-infected cells. Journal of General Virology, 1991, 72, 1301-1308.	2.9	54
57	Degradation of cellular mRNA during influenza virus infection: its possible role in protein synthesis shutoff. Journal of General Virology, 1992, 73, 575-581.	2.9	50
58	Kinetic Role for Mammalian SF1/BBP in Spliceosome Assembly and Function after Polypyrimidine Tract Recognition by U2AF. Journal of Biological Chemistry, 2000, 275, 38059-38066.	3.4	47
59	Diversity of Vertebrate Splicing Factor U2AF35. Journal of Biological Chemistry, 2004, 279, 27039-27049.	3.4	47
60	Nucleocytoplasmic Shuttling of Heterodimeric Splicing Factor U2AF. Journal of Biological Chemistry, 2001, 276, 13104-13112.	3.4	45
61	Molecular basis of differential 3′ splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nature Communications, 2017, 8, 2100.	12.8	45
62	Estimating rates of alternative splicing in mammals and invertebrates. Nature Genetics, 2004, 36, 916-917.	21.4	44
63	The Drosophila <i>fl(2)d</i> Gene, Required for Female-Specific Splicing of <i>Sxl</i> and <i>tra</i> Pre-mRNAs, Encodes a Novel Nuclear Protein With a HQ-Rich Domain. Genetics, 2000, 155, 129-139.	2.9	44
64	Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells. Genome Biology, 2009, 10, R11.	9.6	42
65	Chromatin's thread to alternative splicing regulation. Chromosoma, 2013, 122, 465-474.	2.2	40
66	Multiple Forms of the U2 Small Nuclear Ribonucleoprotein Auxiliary Factor U2AF Subunits Expressed in Higher Plants. Journal of Biological Chemistry, 1998, 273, 34603-34610.	3.4	39
67	Phenotypic hiding: the carryover of mutations in RNA viruses as shown by detection of mar mutants in influenza virus. Journal of Virology, 1989, 63, 4107-4109.	3.4	39
68	Haploinsufficiency, rather than the effect of an excessive production of soluble CD95 (CD95ΔTM), is the basis for ALPS Ia in a family with duplicated 3′ splice site AG in CD95 intron 5 on one allele. Blood, 2005, 106, 1652-1659.	1.4	37
69	Differential 3′ splice site recognition of <i>SMN1</i> and <i>SMN2</i> transcripts by U2AF and U2 snRNP. Rna, 2009, 15, 515-523.	3.5	36
70	A simple principle to explain the evolution of pre-mRNA splicing. Genes and Development, 2006, 20, 1679-1684.	5.9	35
71	Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Reports, 2018, 23, 143-155.	6.4	33
72	Distinct mechanisms of splicing regulation in vivo by the Drosophila protein Sex-lethal. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7343-7348.	7.1	32

#	Article	IF	CITATIONS
73	Distinct regulatory programs establish widespread sex-specific alternative splicing in <i>Drosophila melanogaster</i> . Rna, 2011, 17, 453-468.	3.5	32
74	Promoter-like epigenetic signatures in exons displaying cell type-specific splicing. Genome Biology, 2015, 16, 236.	8.8	32
75	Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells. Rna, 2015, 21, 360-374.	3.5	31
76	The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF65) is essential in vivo but dispensable for activity in vitro. Rna, 2004, 10, 240-253.	3.5	30
77	Modulation of msl-2 5′ splice site recognition by Sex-lethal. Rna, 2001, 7, 1185-1191.	3.5	29
78	Regulation of alternative pre-mRNA splicing. Briefings in Functional Genomics & Proteomics, 2002, 1, 266-277.	3.8	28
79	Frequent somatic mutations in components of the RNA processing machinery in chronic lymphocytic leukemia. Leukemia, 2013, 27, 1600-1603.	7.2	28
80	Structural basis for the recognition of spliceosomal SmN/B/B' proteins by the RBM5 OCRE domain in splicing regulation. ELife, 2016, 5, .	6.0	28
81	Switch in 3′ Splice Site Recognition between Exon Definition and Splicing Catalysis Is Important for Sex-lethal Autoregulation. Molecular and Cellular Biology, 2001, 21, 1986-1996.	2.3	27
82	Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns. Nature Communications, 2019, 10, 3639.	12.8	26
83	Mutations primarily alter the inclusion of alternatively spliced exons. ELife, 2020, 9, .	6.0	24
84	Sudemycin K: A Synthetic Antitumor Splicing Inhibitor Variant with Improved Activity and Versatile Chemistry. ACS Chemical Biology, 2017, 12, 163-173.	3.4	23
85	Splicing of influenza virus matrix protein mRNA expressed from a simian virus 40 recombinant. Journal of General Virology, 1993, 74, 1317-1326.	2.9	22
86	In Vitro Correction of a Pseudoexon-Generating Deep Intronic Mutation in LGMD2A by Antisense Oligonucleotides and Modified Small Nuclear RNAs. Human Mutation, 2013, 34, 1387-1395.	2.5	22
87	Co-option of the piRNA Pathway for Germline-Specific Alternative Splicing of C.Âelegans TOR. Cell Reports, 2014, 8, 1609-1616.	6.4	22
88	Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing. Biosensors and Bioelectronics, 2016, 78, 118-125.	10.1	22
89	Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nature Communications, 2017, 8, 2249.	12.8	22
90	Breaking the second genetic code. Nature, 2010, 465, 45-46.	27.8	19

#	Article	IF	CITATIONS
91	U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5′ splice sites. Biochemical Journal, 2003, 372, 235-240.	3.7	18
92	Functional Network Analysis Reveals the Relevance of SKIIP in the Regulation of Alternative Splicing by p38 SAPK. Cell Reports, 2019, 27, 847-859.e6.	6.4	15
93	Novel functions for `nuclear factors' in the cytoplasm: theSex-lethalparadigm. Seminars in Cell and Developmental Biology, 1997, 8, 561-566.	5.0	14
94	RNA Processing: Redrawing the Map of Charted Territory. Molecular Cell, 2009, 36, 918-919.	9.7	14
95	A splicing mastermind for EMT. EMBO Journal, 2010, 29, 3217-3218.	7.8	14
96	Splicing in 4D. Science, 2012, 338, 1547-1548.	12.6	14
97	Role of six single nucleotide polymorphisms, risk factors in coronary disease, inOLR1alternative splicing. Rna, 2015, 21, 1187-1202.	3.5	14
98	Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation. Rna, 2021, 27, 1557-1576.	3.5	14
99	Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biology, 2021, 22, 171.	8.8	12
100	Mechanisms of Regulated Pre-mRNA Splicing. Molecular Biology Intelligence Unit, 1995, , 97-112.	0.2	12
101	Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. Rna, 2011, 17, 401-411.	3.5	11
102	Site-Specific mRNA Cleavage for Selective and Quantitative Profiling of Alternative Splicing with Label-Free Optical Biosensors. Analytical Chemistry, 2019, 91, 15138-15146.	6.5	11
103	Getting to the heart of a splicing enhancer. Nature Structural Biology, 2003, 10, 6-7.	9.7	9
104	Functional Analysis of Splicing Factors and Regulators. , 1997, , 31-53.		9
105	Reconstruction of composite regulator-target splicing networks from high-throughput transcriptome data. BMC Genomics, 2015, 16, S7.	2.8	8
106	Prescribing splicing. Science, 2015, 347, 124-125.	12.6	8
107	Splicing together sister chromatids. EMBO Journal, 2014, 33, 2601-2603.	7.8	7
108	Alternative Splicing and Cancer. Journal of Nucleic Acids, 2012, 2012, 1-2.	1.2	6

#	Article	IF	CITATIONS
109	Unweaving the Meanings of Messenger RNA Sequences. Molecular Cell, 2006, 23, 150-151.	9.7	5
110	A splicing magic bullet. Science, 2014, 345, 624-625.	12.6	4
111	Spliceosome meets telomerase. Nature, 2008, 456, 879-880.	27.8	2
112	Viral cell biology: Influenza raids the splicing store. Nature Microbiology, 2016, 1, 16100.	13.3	2
113	Elisa Izaurralde 1959–2018. Nature Structural and Molecular Biology, 2018, 25, 547-547.	8.2	2
114	An optimized procedure to mutagenize long (>10 kb) plasmids by PCR. Technical Tips Online, 2000, 5, 3-6.	0.2	1
115	Powering a two-stroke RNA engine. Nature Structural and Molecular Biology, 2007, 14, 574-576.	8.2	1
116	RNAtomy of the Spliceosome's heart. EMBO Journal, 2013, 32, 2785-2787.	7.8	1
117	Competition by the Masses. Molecular Cell, 2013, 51, 279-280.	9.7	1
118	Splicing Calls Back. Cell, 2019, 179, 1446-1447.	28.9	1
119	Cloning and expression of influenza virus segment 7. Virus Research, 1988, 11, 32.	2.2	0
120	A Guide to One of the Genome's Best-Kept Secrets. Molecular Cell, 2008, 31, 782-784.	9.7	0
121	Empowering MYC carcinogenesis via RNA loops. Molecular Cell, 2021, 81, 1365-1367.	9.7	0