Sean N Raymond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1903978/publications.pdf

Version: 2024-02-01

20759 23472 14,446 163 60 citations h-index papers

g-index 165 165 165 6862 docs citations times ranked citing authors all docs

111

#	Article	IF	CITATIONS
1	Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 2017, 542, 456-460.	13.7	1,144
2	A low mass for Mars from Jupiter's early gas-driven migration. Nature, 2011, 475, 206-209.	13.7	992
3	The First Data Release of the Sloan Digital Sky Survey. Astronomical Journal, 2003, 126, 2081-2086.	1.9	800
4	Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus, 2004, 168, 1-17.	1.1	396
5	Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 2009, 203, 644-662.	1.1	356
6	High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 2006, 183, 265-282.	1.1	323
7	Spectroscopic Properties of Cool Stars in the Sloan Digital Sky Survey: An Analysis of Magnetic Activity and a Search for Subdwarfs. Astronomical Journal, 2004, 128, 426-436.	1.9	272
8	A seven-planet resonant chain in TRAPPIST-1. Nature Astronomy, 2017, 1, .	4.2	263
9	An Earth-Sized Planet in the Habitable Zone of a Cool Star. Science, 2014, 344, 277-280.	6.0	252
10	The nature of the TRAPPIST-1 exoplanets. Astronomy and Astrophysics, 2018, 613, A68.	2.1	246
11	Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1750-1770.	1.6	244
12	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
13	Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3728-3741.	1.6	197
14	Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus, 2017, 297, 134-148.	1.1	197
15	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	13.7	191
16	The habitability of Proxima Centauri b. Astronomy and Astrophysics, 2016, 596, A112.	2.1	191
17	Exotic Earths: Forming Habitable Worlds with Giant Planet Migration. Science, 2006, 313, 1413-1416.	6.0	187
18	A Decreased Probability of Habitable Planet Formation around Lowâ€Mass Stars. Astrophysical Journal, 2007, 669, 606-614.	1.6	186

#	Article	IF	CITATIONS
19	The habitability of Proxima Centauri b. Astronomy and Astrophysics, 2016, 596, A111.	2.1	165
20	Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. Planetary Science Journal, 2021, 2, 1.	1.5	161
21	Observable consequences of planet formation models in systems with close-in terrestrial planets. Monthly Notices of the Royal Astronomical Society, 0, 384, 663-674.	1.6	154
22	High-Resolution Simulations of The Final Assembly of Earth-Like Planets. 2. Water Delivery And Planetary Habitability. Astrobiology, 2007, 7, 66-84.	1.5	153
23	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2019, 627, A83.	2.1	149
24	Cataclysmic Variables from the Sloan Digital Sky Survey. II. The Second Year. Astronomical Journal, 2003, 126, 1499-1514.	1.9	138
25	Hot super-Earths and giant planet cores from different migration histories. Astronomy and Astrophysics, 2014, 569, A56.	2.1	132
26	Formation of Earthâ€like Planets During and After Giant Planet Migration. Astrophysical Journal, 2007, 660, 823-844.	1.6	131
27	Planetary system disruption by Galactic perturbations to wide binary stars. Nature, 2013, 493, 381-384.	13.7	131
28	Debris disks as signposts of terrestrial planet formation. Astronomy and Astrophysics, 2011, 530, A62.	2.1	130
29	HABITABLE CLIMATES: THE INFLUENCE OF ECCENTRICITY. Astrophysical Journal, 2010, 721, 1295-1307.	1.6	127
30	PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS. Astrophysical Journal, 2010, 711, 772-795.	1.6	127
31	Challenges in planet formation. Journal of Geophysical Research E: Planets, 2016, 121, 1962-1980.	1.5	127
32	No universal minimum-mass extrasolar nebula: evidence against <i>in situ</i> accretion of systems of hot super-Earths. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 440, L11-L15.	1.2	126
33	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	0.7	118
34	Terrestrial Planet Formation in Disks with Varying Surface Density Profiles. Astrophysical Journal, 2005, 632, 670-676.	1.6	117
35	Formation of planetary systems by pebble accretion and migration: growth of gas giants. Astronomy and Astrophysics, 2019, 623, A88.	2.1	117
36	55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH. Astrophysical Journal, 2011, 740, 49.	1.6	116

3

#	Article	IF	CITATIONS
37	TIDAL LIMITS TO PLANETARY HABITABILITY. Astrophysical Journal, 2009, 700, L30-L33.	1.6	113
38	GENERALIZED MILANKOVITCH CYCLES AND LONG-TERM CLIMATIC HABITABILITY. Astrophysical Journal, 2010, 721, 1308-1318.	1.6	110
39	Mean Motion Resonances from Planet-Planet Scattering. Astrophysical Journal, 2008, 687, L107-L110.	1.6	108
40	Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356.	1.1	108
41	Predicting Planets in Known Extrasolar Planetary Systems. I. Test Particle Simulations. Astrophysical Journal, 2004, 617, 569-574.	1.6	101
42	The empty primordial asteroid belt. Science Advances, 2017, 3, e1701138.	4.7	99
43	Tides and the Evolution of Planetary Habitability. Astrobiology, 2008, 8, 557-568.	1.5	96
44	²⁶ Al AND THE FORMATION OF THE SOLAR SYSTEM FROM A MOLECULAR CLOUD CONTAMINATED BY WOLF-RAYET WINDS. Astrophysical Journal, 2009, 696, 1854-1863.	1.6	96
45	Planet–planet scattering alone cannot explain the free-floating planet population. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L117-L121.	1.2	94
46	Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3620-3635.	1.6	94
47	PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS. Astrophysical Journal, 2009, 696, L98-L101.	1.6	91
48	OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS. Astrophysical Journal Letters, 2014, 795, L11.	3.0	91
49	Habitable Planet Formation in Binary Planetary Systems. Astrophysical Journal, 2007, 666, 436-446.	1.6	90
50	GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS. Astrophysical Journal Letters, 2015, 800, L22.	3.0	89
51	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	2.1	85
52	PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. Astrophysical Journal, 2009, 699, L88-L92.	1.6	83
53	A primordial origin for the compositional similarity between the Earth and the Moon. Nature, 2015, 520, 212-215.	13.7	83
54	The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b. Monthly Notices of the Royal Astronomical Society, 2010, 407, 910-922.	1.6	82

#	Article	IF	CITATIONS
55	Implications of the interstellar object 11/Oumuamua for planetary dynamics and planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3031-3038.	1.6	82
56	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
57	Predicting Planets in Known Extrasolar Planetary Systems. III. Forming Terrestrial Planets. Astrophysical Journal, 2006, 644, 1223-1231.	1.6	74
58	High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Experimental Astronomy, 2012, 34, 385-413.	1.6	73
59	Debris disks as signposts of terrestrial planet formation. Astronomy and Astrophysics, 2012, 541, All.	2.1	73
60	THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS. Astrophysical Journal, 2012, 760, 44.	1.6	72
61	The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 2019, 321, 778-790.	1.1	72
62	The Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form. Astrophysical Journal, 2006, 643, L131-L134.	1.6	70
63	Primordial Origins of Earth's Carbon. Reviews in Mineralogy and Geochemistry, 2013, 75, 149-181.	2.2	69
64	Predicting Planets in Known Extrasolar Planetary Systems. II. Testing for Saturn Mass Planets. Astrophysical Journal, 2005, 619, 549-557.	1.6	68
65	The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System. Astronomical Journal, 2020, 160, 116.	1.9	67
66	Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2380-2391.	1.6	66
67	The formation and habitability of terrestrial planets in the presence of close-in giant planets. Icarus, 2005, 177, 256-263.	1.1	65
68	Is there an exoplanet in the Solar system?. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L109-L113.	1.2	65
69	The Nature and Origins of Subâ€Neptune Size Planets. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006639.	1.5	65
70	TERRESTRIAL PLANET FORMATION IN THE PRESENCE OF MIGRATING SUPER-EARTHS. Astrophysical Journal, 2014, 794, 11.	1.6	63
71	Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy and Astrophysics, 2015, 582, A99.	2.1	63
72	A First Look at White Dwarf-M Dwarf Pairs in the Sloan Digital Sky Survey. Astronomical Journal, 2003, 125, 2621-2629.	1.9	62

#	Article	IF	CITATIONS
73	THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM. Astrophysical Journal, 2016, 833, 40.	1.6	62
74	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	2.1	62
75	Migration-driven diversity of super-Earth compositions. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L81-L85.	1.2	61
76	THE HD 40307 PLANETARY SYSTEM: SUPER-EARTHS OR MINI-NEPTUNES?. Astrophysical Journal, 2009, 695, 1006-1011.	1.6	60
77	Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy and Astrophysics, 2011, 533, A131.	2.1	60
78	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	1.1	60
79	New Worlds on the Horizon: Earth-Sized Planets Close to Other Stars. Science, 2007, 318, 210-213.	6.0	59
80	Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 2013, 226, 671-681.	1.1	59
81	The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST. Astrophysical Journal, 2017, 841, 86.	1.6	59
82	The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2938-2945.	1.6	56
83	Effect of the stellar spin history on the tidal evolution of close-in planets. Astronomy and Astrophysics, 2012, 544, A124.	2.1	56
84	FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM. Astrophysical Journal, 2014, 793, 3.	1.6	55
85	CoRoT-7b: SUPER-EARTH OR SUPER-Io?. Astrophysical Journal Letters, 2010, 709, L95-L98.	3.0	53
86	<i>Mercury-T</i> : A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astronomy and Astrophysics, 2015, 583, A116.	2.1	52
87	A Dynamical Perspective on Additional Planets in 55 Cancri. Astrophysical Journal, 2008, 689, 478-491.	1.6	47
88	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	1.6	46
89	Two Rare Magnetic Cataclysmic Variables with Extreme Cyclotron Features Identified in the Sloan Digital Sky Survey. Astrophysical Journal, 2003, 583, 902-906.	1.6	45
90	Innocent Bystanders: Orbital Dynamics of Exomoons During Planet–Planet Scattering. Astrophysical Journal, 2018, 852, 85.	1.6	45

#	Article	IF	CITATIONS
91	TRAPPIST-1: Global results of the <i>Spitzer</i> Exploration Science Program Red Worlds. Astronomy and Astrophysics, 2020, 640, A112.	2.1	45
92	The Successful Prediction of the Extrasolar Planet HD 74156d. Astrophysical Journal, 2008, 680, L57-L60.	1.6	44
93	Convergence zones for Type I migration: an inward shift for multiple planet systems. Astronomy and Astrophysics, 2013, 553, L2.	2.1	44
94	Extrasolar Planet Eccentricities from Scattering in the Presence of Residual Gas Disks. Astrophysical Journal, 2008, 688, 1361-1367.	1.6	43
95	Planetesimal rings as the cause of the Solar System's planetary architecture. Nature Astronomy, 2022, 6, 357-366.	4.2	43
96	Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario. Astronomical Journal, 2019, 157, 38.	1.9	42
97	VERY WIDE BINARY STARS AS THE PRIMARY SOURCE OF STELLAR COLLISIONS IN THE GALAXY. Astrophysical Journal, 2014, 782, 60.	1.6	41
98	A rich population of free-floating planets in the Upper Scorpius young stellar association. Nature Astronomy, 2022, 6, 89-97.	4.2	41
99	HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION. Astrophysical Journal, 2013, 768, 125.	1.6	40
100	LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS. Astrophysical Journal, 2015, 801, 101.	1.6	40
101	Detectability of Earth-like Planets in Multi-Planet Systems: Preliminary Report. EAS Publications Series, 2010, 42, 191-199.	0.3	39
102	Tidal evolution of planets around brown dwarfs. Astronomy and Astrophysics, 2011, 535, A94.	2.1	39
103	Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 442, L18-L22.	1.2	39
104	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	1.6	39
105	Planet–planet scattering as the source of the highest eccentricity exoplanets. Astronomy and Astrophysics, 2019, 629, L7.	2.1	38
106	55 CANCRI: A COPLANAR PLANETARY SYSTEM THAT IS LIKELY MISALIGNED WITH ITS STAR. Astrophysical Journal Letters, 2011, 742, L24.	3.0	37
107	Mini-Oort clouds: compact isotropic planetesimal clouds from planet–planet scattering. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L99-L103.	1.2	37
108	Interstellar Object 'Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal. Astrophysical Journal Letters, 2018, 856, L7.	3.0	36

#	Article	IF	Citations
109	ROSSITER-MCLAUGHLIN OBSERVATIONS OF 55 Cnc e. Astrophysical Journal Letters, 2014, 792, L31.	3.0	33
110	Early Solar System instability triggered by dispersal of the gaseous disk. Nature, 2022, 604, 643-646.	13.7	33
111	ORBITAL DYNAMICS OF MULTI-PLANET SYSTEMS WITH ECCENTRICITY DIVERSITY. Astrophysical Journal, 2014, 784, 104.	1.6	31
112	SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS. Astronomical Journal, 2013, 146, 63.	1.9	30
113	Migration of accreting planets in radiative discs from dynamical torques. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4130-4140.	1.6	30
114	Tidal dissipation and eccentricity pumping: Implications for the depth of the secondary eclipse of 55 Cancri e. Astronomy and Astrophysics, 2013, 556, A17.	2.1	29
115	Influence of planetary gas accretion on the shape and depth of gaps in protoplanetary discs. Astronomy and Astrophysics, 2020, 643, A133.	2.1	29
116	Dry late accretion inferred from Venus's coupled atmosphere and internal evolution. Nature Geoscience, 2020, 13, 265-269.	5.4	27
117	The Grand Tack model: a critical review. Proceedings of the International Astronomical Union, 2014, 9, 194-203.	0.0	26
118	Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line. Astronomy and Astrophysics, 2021, 649, L5.	2.1	25
119	An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system. Nature Astronomy, 2022, 6, 80-88.	4.2	25
120	Making giant planet cores: convergent migration and growth of planetary embryos in non-isothermal discs. Astronomy and Astrophysics, 2013, 558, A105.	2.1	24
121	Identifying Inflated Super-Earths and Photo-evaporated Cores. Astrophysical Journal, 2018, 866, 104.	1.6	22
122	No evidence for interstellar planetesimals trapped in the Solar system. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L46-L49.	1.2	22
123	Born eccentric: Constraints on Jupiter and Saturn's pre-instability orbits. Icarus, 2021, 355, 114122.	1.1	22
124	A record of the final phase of giant planet migration fossilized in the asteroid belt's orbital structure. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 492, L56-L60.	1.2	21
125	The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries. Astronomy and Astrophysics, 2013, 555, A51.	2.1	20
126	Dynamical Models of Terrestrial Planet Formation. Advanced Science Letters, 2011, 4, 325-338.	0.2	20

#	Article	IF	CITATIONS
127	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
128	SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS. Astronomical Journal, 2013, 146, 122.	1.9	15
129	Thermal Processing of Jupiter-family Comets during Their Chaotic Orbital Evolution. Astrophysical Journal, 2022, 928, 43.	1.6	15
130	Survivor Bias: Divergent Fates of the Solar System's Ejected versus Persisting Planetesimals. Astrophysical Journal Letters, 2020, 904, L4.	3.0	13
131	The †breaking the chains' migration model for super-Earth formation: the effect of collisional fragmentation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2856-2868.	1.6	13
132	Disruption of co-orbital (1:1) planetary resonances during gas-driven orbital migration. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2296-2303.	1.6	12
133	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
134	A Strategy for Finding Near-Earth Objects with the SDSS Telescope. Astronomical Journal, 2004, 127, 2978-2987.	1.9	11
135	The early instability scenario: Mars' mass explained by Jupiter's orbit. Icarus, 2021, 367, 114585.	1.1	11
136	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	1.5	10
137	Vortex instabilities triggered by low-mass planets in pebble-rich, inviscid protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 645-659.	1.6	10
138	The origins of nearly coplanar, non-resonant systems of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2493-2500.	1.6	10
139	STABILITY OF ADDITIONAL PLANETS IN AND AROUND THE HABITABLE ZONE OF THE HD 47186 PLANETARY SYSTEM. Astrophysical Journal, 2009, 695, L181-L184.	1.6	9
140	A deeper view of the CoRoT-9 planetary system. Astronomy and Astrophysics, 2017, 603, A43.	2.1	9
141	Can moons have moons?. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L80-L84.	1.2	9
142	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
143	Realistic survey simulations for kilometer class near Earth objects. Icarus, 2008, 193, 53-73.	1.1	8
144	Mercury as the Relic of Earth and Venus Outward Migration. Astrophysical Journal Letters, 2021, 923, L16.	3.0	8

#	Article	IF	CITATIONS
145	Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits. Icarus, 2021, 367, 114556.	1.1	7
146	A terrestrial convergence. Nature Astronomy, 2021, 5, 875-876.	4.2	6
147	Making systems of Super Earths by inward migration of planetary embryos. Proceedings of the International Astronomical Union, 2013, 8, 360-364.	0.0	5
148	Terrestrial planet formation in extra-solar planetary systems. Proceedings of the International Astronomical Union, 2007, 3, 233-250.	0.0	4
149	Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.	1.6	3
150	The debris disk – terrestrial planet connection. Proceedings of the International Astronomical Union, 2010, 6, 82-88.	0.0	2
151	6. Primordial Origins of Earth's Carbon. , 2013, , 149-182.		1
152	Formation of terrestrial planets in eccentric and inclined giant planet systems. Astronomy and Astrophysics, 2018, 613, A59.	2.1	1
153	NEAR-EARTH OBJECT SURVEY SIMULATIONS WITH A REVISED POPULATION MODEL. Journal of the Korean Astronomical Society, 2008, 41, 7-15.	1.5	1
154	Migration & Extra-solar Terrestrial Planets: Watering the Planets. Proceedings of the International Astronomical Union, 2012, 8, 229-234.	0.0	0
155	Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter. Proceedings of the International Astronomical Union, 2012, 8, 204-211.	0.0	0
156	Planet Formation., 0,, 73-86.		0
157	Tidal evolution in multiple planet systems: application to Kepler-62 and Kepler-186. Proceedings of the International Astronomical Union, 2014, 9, 58-61.	0.0	0
158	Formation of Terrestrial Planets. , 2018, , 1-59.		0
159	Exaggerated Milankovitch-Like Eccentricity Cycles and Extreme Exoplanet Climate Variation. , 2012, , 141-145.		0
160	Formation of telluric planets and the origin of terrestrial water. BIO Web of Conferences, 2014, 2, 01003.	0.1	0
161	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
162	Sculpting Our Planetary System. American Scientist, 2018, 106, 280.	0.1	0

ARTICLE IF CITATIONS

163 Planet formation imager: project update., 2018,,.

0