David R Corey

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1903710/david-r-corey-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,563 96 50 133 h-index g-index citations papers 6.74 10,702 10.7 139 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
133	Difficulties translating antisense-mediated activation of Frataxin expression from cell culture to mice <i>RNA Biology</i> , 2022 , 19, 364-372	4.8	1
132	Argonaute and TNRC6, partners in RNAi 2022 , 17-36		
131	Challenges and Opportunities for Nucleic Acid Therapeutics Nucleic Acid Therapeutics, 2021,	4.8	5
130	Targeting 3\(Untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. <i>Nucleic Acids Research</i> , 2021 , 49, 11560-11574	20.1	О
129	Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. <i>Rna</i> , 2021 , 27, 1004-101	6 5.8	2
128	Argonaute binding within human nuclear RNA and its impact on alternative splicing. Rna, 2021, 27, 991-	19083	4
127	Reexamining assumptions about miRNA-guided gene silencing Nucleic Acids Research, 2021,	20.1	6
126	Analyzing pre-symptomatic tissue to gain insights into the molecular and mechanistic origins of late-onset degenerative trinucleotide repeat disease. <i>Nucleic Acids Research</i> , 2020 , 48, 6740-6758	20.1	7
125	Argonaute binding within 3Uuntranslated regions poorly predicts gene repression. <i>Nucleic Acids Research</i> , 2020 , 48, 7439-7453	20.1	8
124	The 10th Oligonucleotide Therapy Approved: Golodirsen for Duchenne Muscular Dystrophy. <i>Nucleic Acid Therapeutics</i> , 2020 , 30, 67-70	4.8	50
123	Trinucleotide Repeat-Targeting dCas9 as a Therapeutic Strategy for Fuchs Endothelial Corneal Dystrophy. <i>Translational Vision Science and Technology</i> , 2020 , 9, 47	3.3	4
122	Limits of using oligonucleotides for allele-selective inhibition at trinucleotide repeat sequences - targeting the CAG repeat within ataxin-1. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2020 , 39, 185-194	1.4	1
121	Progress towards drug discovery for Friedreichle Ataxia: Identifying synthetic oligonucleotides that more potently activate expression of human frataxin protein. <i>Bioorganic and Medicinal Chemistry</i> , 2020 , 28, 115472	3.4	7
120	Quantitative Studies of Muscleblind Proteins and Their Interaction With TCF4 RNA Foci Support Involvement in the Mechanism of FuchsUDystrophy 2019 , 60, 3980-3991		8
119	Duplex RNAs and ss-siRNAs Block RNA Foci Associated with FuchslEndothelial Corneal Dystrophy. <i>Nucleic Acid Therapeutics</i> , 2019 , 29, 73-81	4.8	7
118	Guidelines for Experiments Using Antisense Oligonucleotides and Double-Stranded RNAs. <i>Nucleic Acid Therapeutics</i> , 2019 , 29, 116-122	4.8	24
117	Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. <i>Rna</i> , 2019 , 25, 1118-1129	5.8	7

(2016-2019)

116	Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. <i>Nucleic Acid Therapeutics</i> , 2019 , 29, 323-334	4.8	7
115	Activation of Frataxin Protein Expression by Antisense Oligonucleotides Targeting the Mutant Expanded Repeat. <i>Nucleic Acid Therapeutics</i> , 2018 , 28, 23-33	4.8	26
114	Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in FuchsU dystrophy. <i>Human Molecular Genetics</i> , 2018 , 27, 1015-1026	5.6	30
113	Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. <i>Nucleic Acids Research</i> , 2018 , 46, 1584-1600	20.1	345
112	Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2018 , 28, 2850-2855	2.9	14
111	The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. <i>Biochemistry</i> , 2018 , 57, 5247-5256	3.2	9
110	c9orf72 Disease-Related Foci Are Each Composed of One Mutant Expanded Repeat RNA. <i>Cell Chemical Biology</i> , 2017 , 24, 141-148	8.2	22
109	Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. <i>Nature Neuroscience</i> , 2017 , 20, 497-499	25.5	136
108	Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs. <i>Nucleic Acid Therapeutics</i> , 2017 , 27, 87-94	4.8	16
107	Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. <i>Cell Reports</i> , 2017 , 20, 1543-1552	10.6	23
106	Non-coding RNAs as drug targets. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 167-179	64.1	492
105	RNA-Mediated Gene Activation: Identifying a Candidate RNA for Preclinical Development. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 983, 161-171	3.6	3
104	HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing. <i>Molecular Cell</i> , 2016 , 63, 420-32	17.6	21
103	Doubts About Therapy for Neurological Diseases With Antisense Oligonucleotides-Reply. <i>JAMA Neurology</i> , 2016 , 73, 1502-1503	17.2	1
102	Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. <i>Rna</i> , 2016 , 22, 1085-98	5.8	30
101	Regulation of mammalian transcription and splicing by Nuclear RNAi. <i>Nucleic Acids Research</i> , 2016 , 44, 524-37	20.1	67
100	Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches. <i>Biochemistry</i> , 2016 , 55, 1283-6	3.2	24
99	Activating frataxin expression by repeat-targeted nucleic acids. <i>Nature Communications</i> , 2016 , 7, 10606	17.4	55

98	Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics. <i>Molecular Therapy</i> , 2016 , 24, 946-55	11.7	32
97	Synthetic Nucleic Acids and Treatment of Neurological Diseases. <i>JAMA Neurology</i> , 2016 , 73, 1238-1242	17.2	4
96	Design and bioinformatics analysis of genome-wide CLIP experiments. <i>Nucleic Acids Research</i> , 2015 , 43, 5263-74	20.1	57
95	Modulation of Splicing by Single-Stranded Silencing RNAs. <i>Nucleic Acid Therapeutics</i> , 2015 , 25, 113-20	4.8	14
94	Reduced Expression of Argonaute 1, Argonaute 2, and TRBP Changes Levels and Intracellular Distribution of RNAi Factors. <i>Scientific Reports</i> , 2015 , 5, 12855	4.9	19
93	Intramolecular circularization increases efficiency of RNA sequencing and enables CLIP-Seq of nuclear RNA from human cells. <i>Nucleic Acids Research</i> , 2015 , 43, e75	20.1	11
92	Stepping toward therapeutic CRISPR. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15536-7	11.5	7
91	Engineering Duplex RNAs for Challenging Targets: Recognition of GGGGCC/CCCGG Repeats at the ALS/FTD C9orf72 Locus. <i>Chemistry and Biology</i> , 2015 , 22, 1505-1511		17
90	Identification and validation of miRNA target sites within nontraditional miRNA targets. <i>Methods in Molecular Biology</i> , 2015 , 1206, 53-67	1.4	2
89	Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. <i>Nature Protocols</i> , 2014 , 9, 2045-60	18.8	111
88	Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. <i>Biochemistry</i> , 2014 , 53, 4510-8	3.2	26
87	Effect of 2UO-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells. <i>Artificial DNA, PNA & XNA</i> , 2014 , 5, e1146391		4
86	Exploring the effect of sequence length and composition on allele-selective inhibition of human huntingtin expression by single-stranded silencing RNAs. <i>Nucleic Acid Therapeutics</i> , 2014 , 24, 199-209	4.8	15
85	RNAi factors are present and active in human cell nuclei. <i>Cell Reports</i> , 2014 , 6, 211-21	10.6	253
84	Digital quantitation of potential therapeutic target RNAs. <i>Nucleic Acid Therapeutics</i> , 2013 , 23, 188-94	4.8	47
83	Allele-selective inhibition of expression of huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. <i>Biochemistry</i> , 2013 , 52, 9329-38	3.2	16
82	Transcriptional silencing by single-stranded RNAs targeting a noncoding RNA that overlaps a gene promoter. <i>ACS Chemical Biology</i> , 2013 , 8, 122-6	4.9	22
81	ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy. <i>Nucleic Acids Research</i> , 2013 , 41, 9570-83	20.1	36

(2010-2013)

80	RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. <i>Nucleic Acids Research</i> , 2013 , 41, 8788-801	20.1	30
79	Promoter RNA links transcriptional regulation of inflammatory pathway genes. <i>Nucleic Acids Research</i> , 2013 , 41, 10086-109	20.1	144
78	Allele-selective inhibition of trinucleotide repeat genes. <i>Drug Discovery Today</i> , 2012 , 17, 443-50	8.8	27
77	Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. <i>Cell</i> , 2012 , 150, 895-908	56.2	215
76	Silencing disease genes in the laboratory and the clinic. <i>Journal of Pathology</i> , 2012 , 226, 365-79	9.4	267
75	Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. <i>Nucleic Acid Therapeutics</i> , 2012 , 22, 3-16	4.8	49
74	Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. <i>Nucleic Acids Research</i> , 2012 , 40, 1240-50	20.1	58
73	Mechanism of allele-selective inhibition of huntingtin expression by duplex RNAs that target CAG repeats: function through the RNAi pathway. <i>Nucleic Acids Research</i> , 2012 , 40, 11270-80	20.1	30
72	Clonal Rett Syndrome cell lines to test compounds for activation of wild-type MeCP2 expression. Bioorganic and Medicinal Chemistry Letters, 2011 , 21, 5202-5	2.9	10
71	Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. <i>Nucleic Acids Research</i> , 2011 , 39, 5682-91	20.1	150
70	Transcriptional regulation by miRNA mimics that target sequences downstream of gene termini. <i>Molecular BioSystems</i> , 2011 , 7, 2383-8		25
69	Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8404-7	16.4	33
68	Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. <i>Biological Chemistry</i> , 2011 , 392, 315-25	4.5	43
67	Transcriptional regulation by small RNAs at sequences downstream from 3Ugene termini. <i>Nature Chemical Biology</i> , 2010 , 6, 621-9	11.7	89
66	Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. <i>Nucleic Acids Research</i> , 2010 , 38, 7736-48	3 ^{20.1}	136
65	Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters. <i>Nucleic Acids Research</i> , 2010 , 38, 5242	2- 3 9 ^{.1}	37
64	Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. <i>Biochemistry</i> , 2010 , 49, 10166-78	3.2	116
63	Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. <i>Chemistry and Biology</i> , 2010 , 17, 1344-55		71

62	Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. <i>Chemistry and Biology</i> , 2010 , 17, 1183-8		79
61	Clinical status of duplex RNA. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 3203-7	2.9	53
60	Telomerase enzyme inhibition (TEI) and cytolytic therapy in the management of androgen independent osseous metastatic prostate cancer. <i>Prostate</i> , 2010 , 70, 616-29	4.2	5
59	The puzzle of RNAs that target gene promoters. <i>ChemBioChem</i> , 2009 , 10, 1135-9	3.8	15
58	Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. <i>Nature Biotechnology</i> , 2009 , 27, 478-84	44.5	193
57	Allele-selective inhibition of mutant huntingtin by peptide nucleic acid-peptide conjugates, locked nucleic acid, and small interfering RNA. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1175, 24-31	6.5	38
56	Telomeres and telomerase: from discovery to clinical trials. <i>Chemistry and Biology</i> , 2009 , 16, 1219-23		40
55	Predicting potential miRNA target sites within gene promoters. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 3791-4	2.9	56
54	Cellular localization and allele-selective inhibition of mutant huntingtin protein by peptide nucleic acid oligomers containing the fluorescent nucleobase [bis-o-(aminoethoxy)phenyl]pyrrolocytosine. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 6181-4	2.9	17
53	Antisense transcripts are targets for activating small RNAs. <i>Nature Structural and Molecular Biology</i> , 2008 , 15, 842-8	17.6	239
52	Recognition of chromosomal DNA inside cells by locked nucleic acids. <i>Biochemistry</i> , 2008 , 47, 13147-9	3.2	25
51	Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA. <i>Biochemistry</i> , 2007 , 46, 7572-80	3.2	31
50	Inhibiting gene expression with peptide nucleic acid (PNA)peptide conjugates that target chromosomal DNA. <i>Biochemistry</i> , 2007 , 46, 7581-9	3.2	78
49	Chemical modification: the key to clinical application of RNA interference?. <i>Journal of Clinical Investigation</i> , 2007 , 117, 3615-22	15.9	219
48	RNA learns from antisense 2007 , 3, 8-11		77
47	Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. <i>Nature Chemical Biology</i> , 2007 , 3, 166-73	11.7	402
46	Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. <i>Molecular Endocrinology</i> , 2006 , 20, 2724-33		213
45	Small molecule, oligonucleotide-based telomerase template inhibition in combination with cytolytic therapy in an in vitro androgen-independent prostate cancer model. <i>Urologic Oncology:</i>	2.8	14

(2003-2006)

44	Silencing gene expression by targeting chromosomal DNA with antigene peptide nucleic acids and duplex RNAs. <i>Nature Protocols</i> , 2006 , 1, 436-43	18.8	37
43	Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. <i>Nature Structural and Molecular Biology</i> , 2006 , 13, 787-92	17.6	270
42	Peptide Nucleic Acids 2006 , 236-242		
41	Calcium liberates PNAs from endosomes. <i>Chemistry and Biology</i> , 2005 , 12, 864-5		1
40	Recognition of chromosomal DNA in human cells by peptide nucleic acids and small duplex RNAs. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1058, 16-25	6.5	2
39	Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids. <i>Nature Chemical Biology</i> , 2005 , 1, 210-5	11.7	143
38	Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. <i>Nature Chemical Biology</i> , 2005 , 1, 216-22	11.7	142
37	Regulating mammalian transcription with RNA. <i>Trends in Biochemical Sciences</i> , 2005 , 30, 655-8	10.3	27
36	Peptide nucleic acids: Cellular delivery and recognition of DNA and RNA targets. <i>International Journal of Peptide Research and Therapeutics</i> , 2005 , 10, 347-352	2.1	
35	Challenges for RNAi in vivo. <i>Trends in Biotechnology</i> , 2004 , 22, 390-4	15.1	88
34	Biodistribution of phosphodiester and phosphorothioate siRNA. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2004 , 14, 1139-43	2.9	222
33	Efficient and isoform-selective inhibition of cellular gene expression by peptide nucleic acids. <i>Biochemistry</i> , 2004 , 43, 1921-7	3.2	23
32	Intracellular uptake and inhibition of gene expression by PNAs and PNA-peptide conjugates. <i>Biochemistry</i> , 2004 , 43, 14340-7	3.2	67
31	Synthesis of oligonucleotide-peptide and oligonucleotide-protein conjugates. <i>Methods in Molecular Biology</i> , 2004 , 283, 197-206	1.4	3
30	Validating Bioluminescence Imaging as a High-Throughput, Quantitative Modality for Assessing Tumor Burden. <i>Molecular Imaging</i> , 2004 , 3, 153535002004031	3.7	
29	Peptide nucleic acids: Cellular delivery and recognition of DNA and RNA targets. <i>International Journal of Peptide Research and Therapeutics</i> , 2003 , 10, 347-352		
28	Imaging gene expression using oligonucleotides and peptide nucleic acids. <i>Journal of Cellular Biochemistry</i> , 2003 , 90, 437-42	4.7	9
27	RNA interference in mammalian cells by chemically-modified RNA. <i>Biochemistry</i> , 2003 , 42, 7967-75	3.2	466

26	Peptide nucleic acids: Cellular delivery and recognition of DNA and RNA targets. <i>International Journal of Peptide Research and Therapeutics</i> , 2003 , 10, 347-352	2.1	5
25	Consequences of telomerase inhibition and combination treatments for the proliferation of cancer cells. <i>Cancer Research</i> , 2003 , 63, 5917-25	10.1	42
24	Telomerase inhibition, oligonucleotides, and clinical trials. <i>Oncogene</i> , 2002 , 21, 631-7	9.2	86
23	Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. <i>Nucleic Acids Research</i> , 2002 , 30, 5160-7	20.1	86
22	Telomerase inhibition, telomere shortening, and decreased cell proliferation by cell permeable 2UO-methoxyethyl oligonucleotides. <i>Journal of Medicinal Chemistry</i> , 2002 , 45, 5423-5	8.3	19
21	Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. <i>Biochemistry</i> , 2002 , 41, 9973-81	3.2	84
20	Novel antisense and peptide nucleic acid strategies for controlling gene expression. <i>Biochemistry</i> , 2002 , 41, 4503-10	3.2	230
19	Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington'd disease with an antisense radiopharmaceutical and drug-targeting technology. <i>Journal of Nuclear Medicine</i> , 2002 , 43, 948-56	8.9	43
18	Liver cell specific targeting of peptide nucleic acid oligomers. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2001 , 11, 1269-72	2.9	46
17	Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. <i>Chemistry and Biology</i> , 2001 , 8, 1-7		461
16	The structure of a Michaelis serpin-protease complex. <i>Nature Structural Biology</i> , 2001 , 8, 979-83		125
15	Morpholino antisense oligonucleotides: tools for investigating vertebrate development. <i>Genome Biology</i> , 2001 , 2, REVIEWS1015	18.3	110
14	Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. <i>Methods</i> , 2001 , 23, 97-107	4.6	52
13	Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. <i>Biochemistry</i> , 2001 , 40, 53-64	3.2	139
12	Strand invasion by mixed base PNAs and a PNA-peptide chimera. <i>Nucleic Acids Research</i> , 2000 , 28, 3332	-8 0.1	55
11	Strand invasion by DNA-peptide conjugates and peptide nucleic acids. <i>Nucleic Acids Symposium Series</i> , 1999 , 141-2		1
10	Cellular delivery of peptide nucleic acids and inhibition of human telomerase. <i>Chemistry and Biology</i> , 1999 , 6, 343-51		142
9	Telomerase inhibition by peptide nucleic acids reverses the transformed human cells. <i>Oncogene</i> , 1999 , 18, 6191-200	9.2	130

LIST OF PUBLICATIONS

8	Automated synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates. <i>Analytical Biochemistry</i> , 1999 , 268, 401-4	3.1	45
7	Rules for Strand Invasion by Chemically Modified Oligonucleotides. <i>Journal of the American Chemical Society</i> , 1999 , 121, 2012-2020	16.4	27
6	Identification of determinants for inhibitor binding within the RNA active site of human telomerase using PNA scanning. <i>Biochemistry</i> , 1997 , 36, 11873-80	3.2	92
5	Synthesis and membrane permeability of PNA-peptide conjugates. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1997 , 7, 3001-3006	2.9	94
4	Specific and nonspecific inhibition of transcription by DNA, PNA, and phosphorothioate promoter analog duplexes. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1996 , 6, 2897-2900	2.9	39
3	Inhibition of human telomerase activity by peptide nucleic acids. <i>Nature Biotechnology</i> , 1996 , 14, 615-9	44.5	314
2	Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. <i>Nature Biotechnology</i> , 1996 , 14, 1700-4	44.5	74
1	Targeting peptide nucleic acid-protein conjugates to structural features within duplex DNA. Bioorganic and Medicinal Chemistry, 1995, 3, 437-45	3.4	37