Fan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1903206/publications.pdf Version: 2024-02-01

FANLI

#	Article	IF	CITATIONS
1	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chemistry of Materials, 2016, 28, 3131-3138.	6.7	174
2	Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41887-41897.	8.0	171
3	A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells. Nano Energy, 2017, 40, 155-162.	16.0	147
4	Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 2018, 427, 782-790.	6.1	93
5	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.	16.0	92
6	Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 44501-44510.	8.0	73
7	Mechanism Study on the Formation of Liquid Calcium Aluminate Inclusion from MgOâ€Al ₂ O ₃ Spinel. Steel Research International, 2006, 77, 785-792.	1.8	67
8	Sulfonated carbon nanotubes/sulfonated poly(ether sulfone ether ketone ketone) composites for polymer electrolyte membranes. Polymers for Advanced Technologies, 2011, 22, 1747-1752.	3.2	54
9	Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 1018-1027.	5.5	51
10	Mesogens Mediated Self-Assembly in Applications of Bulk Heterojunction Solar Cells Based on a Conjugated Polymer with Narrow Band Gap. Macromolecules, 2011, 44, 2698-2706.	4.8	34
11	Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells. Solar Energy Materials and Solar Cells, 2012, 96, 266-275.	6.2	33
12	Liquid Crystal Helps ZnO Nanoparticles Self-Assemble for Performance Improvement of Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 6332-6339.	3.1	31
13	Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37, 236-244.	2.8	31
14	<i>In situ</i> inclusion of thiocyanate for highly luminescent and stable CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals. Nanoscale, 2019, 11, 1319-1325.	5.6	29
15	RESEARCH ON RAPID-PROTOTYPING/PART MANUFACTURING (RP&M) FOR THE CONTINUOUS FIBER REINFORCED COMPOSITE. Materials and Manufacturing Processes, 2001, 16, 17-26.	4.7	28
16	Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37, 195-203.	2.8	27
17	A Simple and Universal Method to Increase Light Absorption in Ternary Blend Polymer Solar Cells Based on Ladderâ€Type Polymers. Advanced Optical Materials, 2015, 3, 321-327	7.3	27
18	Strengthened Perovskite/Fullerene Interface Enhances Efficiency and Stability of Inverted Planar Perovskite Solar Cells via a Tetrafluoroterephthalic Acid Interlayer. ACS Applied Materials & Interfaces, 2019, 11, 33515-33524.	8.0	27

Fan Li

#	Article	IF	CITATIONS
19	Functionalized Ionic Liquid-Crystal Additive for Perovskite Solar Cells with High Efficiency and Excellent Moisture Stability. ACS Applied Materials & Interfaces, 2021, 13, 17677-17689.	8.0	26
20	Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D–A copolymer and ZnO nanocrystals. Journal of Materials Chemistry, 2012, 22, 6259.	6.7	25
21	Synthesis and Helical Conformation of Novel Optically Active Liquid Crystalline Poly(<i>p</i> -phenylene)s Containing Cyanoterphenyl Mesogen as Pendant. Macromolecules, 2009, 42, 5053-5061.	4.8	24
22	In situ preparation and fluorescence quenching properties of polythiophene/ZnO nanocrystals hybrids through atom-transfer radical polymerization and hydrolysis. Applied Surface Science, 2010, 256, 2948-2955.	6.1	24
23	Photovoltaic performance enhancement in P3HT/ZnO hybrid bulk-heterojunction solar cells induced by semiconducting liquid crystal ligands. Organic Electronics, 2012, 13, 2757-2762.	2.6	24
24	Nano-bio hybrids of plasmonic metals/photosynthetic proteins for broad-band light absorption enhancement in organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13400-13406.	10.3	24
25	Luminescent mesogen jacketed poly(1â€alkyne) bearing lateral terphenyl with hexyloxy tail. Journal of Polymer Science Part A, 2010, 48, 5679-5692.	2.3	22
26	A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples. Mikrochimica Acta, 2021, 188, 311.	5.0	21
27	Direct application of P3HT-DOPO@ZnO nanocomposites in hybrid bulk heterojunction solar cells via grafting P3HT onto ZnO nanoparticles. Solar Energy Materials and Solar Cells, 2012, 97, 64-70.	6.2	19
28	Integration of light-harvesting complexes into the polymer bulk heterojunction P3HT/PCBM device for efficient photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 7342.	6.7	18
29	Orientation Behavior of Bulk Heterojunction Solar Cells Based on Liquid-Crystalline Polyfluorene and Fullerene. Journal of Physical Chemistry C, 2010, 114, 18001-18011.	3.1	17
30	Effect of the initial thin Ti buffer layers on the quality of ZnO thin films grown on Si(111) substrates by MOCVD. Superlattices and Microstructures, 2006, 40, 56-63.	3.1	16
31	A novel type of optically active helical liquid crystalline polymers: Synthesis and characterization of poly(<i>p</i> â€phenylene)s containing terphenyl mesogen with different terminal groups. Journal of Polymer Science Part A, 2009, 47, 4723-4735.	2.3	16
32	Inducting effects of ionic liquid crystal modified-PEDOT:PSS on the performance of bulk heterojunction polymer solar cells. RSC Advances, 2015, 5, 52874-52881.	3.6	16
33	Understanding the mechanism of poly(3-hexylthiophene)-b-poly(4-vinylpyridine) as a nanostructuring compatibilizer for improving the performance of poly(3-hexylthiophene)/ZnO-based hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 10881.	10.3	13
34	The critical role of additives in binary halogen-free solvent systems for the general processing of highly efficient organic solar cells. RSC Advances, 2015, 5, 93689-93696.	3.6	13
35	Enhanced Photoluminescence, Mesomorphism and Conformation of Liquidâ€Crystalline Conjugated Polymers with Terphenyl Mesogen Pendants. Macromolecular Chemistry and Physics, 2011, 212, 24-41.	2.2	12
36	Suppressing interfacial defect formation derived from in-situ-generated polyethylenimine-based 2D perovskites to boost the efficiency and stability NiOx-based inverted planar perovskite solar cells. Applied Surface Science, 2021, 548, 149276.	6.1	12

Fan Li

#	Article	IF	CITATIONS
37	Surface treatment enabled by functional guanidinium tetrafluoroborate achieving high-performance inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 240, 111682.	6.2	12
38	Photoluminescent, liquidâ€crystalline, and electrochemical properties of <i>para</i> â€phenyleneâ€based alternating conjugated copolymers. Journal of Polymer Science Part A, 2010, 48, 434-442.	2.3	9
39	Approach to a block polymer precursor from poly(3-hexylthiophene) nitroxide-mediated in situ polymerization for stabilization of poly(3-hexylthiophene)/ZnO hybrid solar cells. Thin Solid Films, 2012, 520, 6299-6306.	1.8	9
40	Improvement of morphology and performance of P3HT/ZnO hybrid solar cells induced by liquid crystal molecules. Chemical Physics Letters, 2016, 661, 119-124.	2.6	8
41	<i>In situ</i> tetrafluoroborate-modified MAPbBr ₃ nanocrystals showing high photoluminescence, stability and self-assembly behavior. Journal of Materials Chemistry C, 2020, 8, 1989-1997.	5.5	8
42	Effects of substitution and terminal groups for liquid-crystallinity enhanced luminescence of disubstituted polyacetylenes carrying chromophoric terphenyl pendants. Science China Chemistry, 2010, 53, 1302-1315.	8.2	7
43	A carbon-quantum-dot-hybridized NiO _{<i>x</i>} hole-transport layer enables efficient and stable planar p–i–n perovskite solar cells with high open-circuit voltage. Journal of Materials Chemistry C, 2021, 9, 12213-12223.	5.5	7
44	Synthesis and properties of novel ferroelectric liquid crystalline polyacetylenes containing terphenyl mesogens with chiral groups. Journal of Thermal Analysis and Calorimetry, 2011, 105, 995-1006.	3.6	6
45	In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. Journal of Materials Chemistry, 2012, , .	6.7	6
46	Ultrahigh photo-stable all-inorganic perovskite nanocrystals and their robust random lasing. Nanoscale Advances, 2020, 2, 888-895.	4.6	6
47	Role of π-conjugated-length-regulated perovskite intergrain interconnecting in the photovoltaic performance of perovskite solar cells. Applied Surface Science, 2022, 585, 152670.	6.1	5
48	Approach to cross-linked polynorbornene/ZnO nanocomposites through nitroxide-mediated free radical graft polymerization and in situ hydrolysis. Optical Materials, 2012, 34, 1563-1569.	3.6	3
49	Improved microstructure and performance of PbS thin films via in-situ thermal decomposition of lead xanthate precursors using self-assembling monolayer. Superlattices and Microstructures, 2016, 97, 378-385.	3.1	3
50	All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells. Frontiers of Materials Science, 2018, 12, 225-238.	2.2	3
51	Boosting the efficiency and stability of polymer solar cells using poly(3-hexylthiophene)-based all-conjugated diblock copolymers containing pentafluorophenyl groups. Journal of Materials Science: Materials in Electronics, 2018, 29, 10337-10345.	2.2	2