Natasa Zabukovec Logar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1903009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Applied Surface Science, 2010, 257, 1524-1532.	6.1	96
2	Synthesis of Nanometric LiMnPO ₄ via a Two-Step Technique. Chemistry of Materials, 2012, 24, 1041-1047.	6.7	91
3	Superior Performance of Microporous Aluminophosphate with LTA Topology in Solarâ€Energy Storage and Heat Reallocation. Advanced Energy Materials, 2017, 7, 1601815.	19.5	86
4	The Performance of Smallâ€Pore Microporous Aluminophosphates in Lowâ€Temperature Solar Energy Storage: The Structure–Property Relationship. Advanced Functional Materials, 2012, 22, 1952-1957.	14.9	80
5	Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. Journal of Hazardous Materials, 2009, 172, 1450-1457.	12.4	74
6	A novel open framework zincophosphate: Synthesis and characterization. Zeolites, 1995, 15, 672-678.	0.5	70
7	Spectroscopic Studies of Structural Dynamics Induced by Heating and Hydration: A Case of Calcium-Terephthalate Metal–Organic Framework. Journal of Physical Chemistry C, 2013, 117, 7552-7564.	3.1	64
8	Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Applied Catalysis B: Environmental, 2020, 268, 118749.	20.2	63
9	Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous and Mesoporous Materials, 2007, 105, 251-259.	4.4	58
10	Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 2015, 36, 1605-1611.	3.9	56
11	A Simple NMRâ€Based Method for Studying the Spatial Distribution of Linkers within Mixedâ€Linker Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 10535-10538.	13.8	55
12	Control of the Crystallization Process and Structure Dimensionality of Mg–Benzene–1,3,5-Tricarboxylates by Tuning Solvent Composition. Crystal Growth and Design, 2013, 13, 3825-3834.	3.0	47
13	Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water. Journal of Materials Chemistry A, 2017, 5, 22305-22315.	10.3	47
14	Anomalous scattering in structural chemistry and biology¶. Crystallography Reviews, 2005, 11, 245-335.	1.5	44
15	Cycling stability and degradation mechanism of LiMnPO4 based electrodes. Journal of Power Sources, 2016, 303, 97-108.	7.8	44
16	MnO _{<i>x</i>} Nanoparticles Supported on a New Mesostructured Silicate with Textural Porosity. Chemistry - A European Journal, 2010, 16, 5783-5793.	3.3	40
17	Synthesis and structure of [Zn8(HPO4)8(H2PO4)8]•[(C2H8N)8]•4H2O. European Journal of Solid State and Inorganic Chemistry, 1998, 35, 373-387.	0.5	38
18	Structure investigation of As(III)- and As(V)-species bound to Fe-modified clinoptilolite tuffs. Microporous and Mesoporous Materials, 2009, 118, 408-415.	4.4	37

#	Article	IF	CITATIONS
19	A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. Journal of Materials Chemistry A, 2017, 5, 1967-1971.	10.3	37
20	Controlled Synthesis of Phaseâ€Pure Zeolitic Imidazolate Framework Coâ€ZIFâ€9. European Journal of Inorganic Chemistry, 2015, 2015, 1625-1630.	2.0	36
21	Structural and CO ₂ Capture Properties of Ethylenediamine-Modified HKUST-1 Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 5455-5465.	3.0	35
22	Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1:  Synthesis and Characterization. Chemistry of Materials, 2003, 15, 4745-4750.	6.7	33
23	Improved performance of binder-free zeolite Y for low-temperature sorption heat storage. Journal of Materials Chemistry A, 2018, 6, 11521-11530.	10.3	33
24	The Co-MOF-74 modified with N,N′-Dihydroxypyromellitimide for selective, solvent free aerobic oxidation of toluene. Catalysis Communications, 2018, 110, 88-92.	3.3	32
25	Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catalysis Today, 2020, 358, 270-277.	4.4	32
26	Spectroscopic Evidence for the Structure Directing Role of the Solvent in the Synthesis of Two Iron Carboxylates. Angewandte Chemie - International Edition, 2012, 51, 12490-12494.	13.8	27
27	Novel Amine-impregnated Mesostructured Silica Materials for CO2 Capture. Energy Procedia, 2017, 114, 2252-2258.	1.8	27
28	Large-Pore FAPO-36:Â Synthesis and Characterization. Chemistry of Materials, 2003, 15, 3643-3649.	6.7	26
29	Synthesis and structural investigations on aluminium-free Ti-Beta/SBA-15 composite. Microporous and Mesoporous Materials, 2009, 117, 458-465.	4.4	26
30	Indomethacin Embedded into MIL-101 Frameworks: A Solid-State NMR Study. Journal of Physical Chemistry C, 2014, 118, 6140-6150.	3.1	26
31	Enhanced Oxygen Reduction and Methanol Oxidation Reaction Activities of Partially Ordered PtCu Nanoparticles. Energy Procedia, 2012, 29, 208-215.	1.8	25
32	Synthesis and structural properties of titanium containing microporous/mesoporous silicate composite (Ti, Al)-Beta/MCM-48. Microporous and Mesoporous Materials, 2007, 99, 3-13.	4.4	24
33	Titanium containing microporous/mesoporous composite (Ti,Al)-Beta/MCM-41: Synthesis and characterization. Microporous and Mesoporous Materials, 2006, 95, 76-85.	4.4	23
34	Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite. Microporous and Mesoporous Materials, 2013, 176, 162-167.	4.4	22
35	Mesoporous Aluminophosphate Thin Films with Cubic Pore Arrangement. Langmuir, 2008, 24, 6220-6225.	3.5	21
36	Highly crystalline binder-free ZSM-5 granules preparation. Microporous and Mesoporous Materials, 2015, 213, 108-117.	4.4	21

#	Article	IF	CITATIONS
37	Study of Hydrothermal Stability and Water Sorption Characteristics of 3-Dimensional Zn-Based Trimesate. Journal of Physical Chemistry C, 2013, 117, 14608-14617.	3.1	20
38	Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties. Journal of Solid State Chemistry, 2015, 225, 209-215.	2.9	19
39	Syntheses and Structures of Two Ammonium Zinc Gallophosphates: Analcime and Paracelsian analogs. Journal of Solid State Chemistry, 2001, 156, 480-486.	2.9	18
40	Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent. Microporous and Mesoporous Materials, 2002, 55, 313-319.	4.4	18
41	Local environment of manganese incorporated in mesoporous MCM-41. Microporous and Mesoporous Materials, 2005, 82, 129-136.	4.4	18
42	Sorption of Cr3+ on clinoptilolite tuff: A structural investigation. Microporous and Mesoporous Materials, 2006, 93, 275-284.	4.4	18
43	Phase Formation Study of Ca-Terephthalate MOF-Type Materials. Crystal Growth and Design, 2015, 15, 617-624.	3.0	18
44	Zeolite Nanocrystals Embedded in Microcellular Carbon Foam as a Highâ€Performance CO ₂ Capture Adsorbent with Energyâ€Saving Regeneration Properties. ChemSusChem, 2020, 13, 2089-2097.	6.8	18
45	Determination of the site of incorporation of cobalt in CoZnPO-CZP by multiple-wavelength anomalous-dispersion crystallography. Acta Crystallographica Section B: Structural Science, 1999, 55, 327-332.	1.8	17
46	Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques. Acta Chimica Slovenica, 2016, 63, 440-458.	0.6	17
47	New Composite Water Sorbents CaCl2-PHTS for Low-Temperature Sorption Heat Storage: Determination of Structural Properties. Nanomaterials, 2019, 9, 27.	4.1	16
48	Crystal structure of pure-silica ZSM-12 with tetraethylammonium cations from X-ray powder diffraction data. Microporous and Mesoporous Materials, 2009, 122, 255-263.	4.4	15
49	Synthesis and structure of a new cobalt-containing aluminophosphate. Zeolites, 1995, 15, 104-110.	0.5	14
50	New Inorganicâ^'Organic Hybrid:  Synthesis and Structural Characterization of an Alumino(oxalato)phosphate. Chemistry of Materials, 2003, 15, 1734-1738.	6.7	14
51	Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: Synthesis and characterization. Microporous and Mesoporous Materials, 2006, 96, 386-395.	4.4	14
52	Determination of zinc incorporation in the Zn-substituted gallophosphate ZnULM-5 by multiple wavelength anomalous dispersion techniques. Acta Crystallographica Section B: Structural Science, 2010, 66, 345-357.	1.8	14
53	Pore Occupancy Changes Water/Ethanol Separation in a Metal–Organic Framework—Quantitative Map of Coadsorption by IR. Journal of Physical Chemistry C, 2015, 119, 22570-22576.	3.1	14
54	Structure and magnetic properties of a new iron(II) citrate coordination polymer. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 490-495.	1.1	13

#	Article	IF	CITATIONS
55	Study of water adsorption on EDTA dealuminated zeolite Y. Microporous and Mesoporous Materials, 2020, 302, 110208.	4.4	13
56	Synthesis and structure determination of a chain-like aluminophosphate obtained with 1,2-diaminopropane as the structure-directing agent. Journal of Physics and Chemistry of Solids, 2003, 64, 1097-1103.	4.0	11
57	Structural and degradation studies of a biocompatible Zn-l-tartrate metal–organic framework. Journal of Solid State Chemistry, 2015, 225, 59-64.	2.9	11
58	Green Solvents as an Alternative to DMF in ZIF-90 Synthesis. Molecules, 2021, 26, 1573.	3.8	11
59	A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. Journal of Thermal Analysis and Calorimetry, 2007, 87, 339-343.	3.6	10
60	Solid-State NMR Study of an Open-Framework Aluminophosphate-Oxalate Hybrid. Journal of Physical Chemistry B, 2003, 107, 1286-1292.	2.6	9
61	Local environment of iron in the mesoporous hexagonal aluminophosphate catalyst. Microporous and Mesoporous Materials, 2005, 87, 52-58.	4.4	8
62	The use of softer X-rays in the structure elucidation of microporous materials. Journal of Synchrotron Radiation, 2005, 12, 420-430.	2.4	7
63	Structure investigation of fluorinated aluminophosphate ULM-3 Al templated by 3-methylaminopropylamine. Journal of Solid State Chemistry, 2010, 183, 1055-1062.	2.9	7
64	The potential of clinoptilolite-rich tuffs from Croatia and Serbia for the reduction of toxic concentrations of cations and anions in aqueous solutions. Applied Clay Science, 2015, 116-117, 111-119.	5.2	7
65	New Insights into Manganese Local Environment in MnS-1 Nanocrystals. Crystal Growth and Design, 2019, 19, 3130-3138.	3.0	7
66	A novel open-framework sodium zincophosphate with isomorphous cobalt(II) substitution. Journal of the Chemical Society Chemical Communications, 1995, , 1681-1682.	2.0	6
67	Synthesis and single-crystal structure analysis of a new layered zinc phosphate. Pure and Applied Chemistry, 2005, 77, 1707-1717.	1.9	6
68	A new layered Ca–succinate coordination polymer. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, m4-m6.	0.4	6
69	Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant. Catalysts, 2021, 11, 252.	3.5	6
70	Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges. Nanomaterials, 2020, 10, 2419.	4.1	6
71	Corrosion Protection of Platinum-Based Electrocatalyst by Ruthenium Surface Decoration. ACS Applied Energy Materials, 2018, 1, 3190-3197.	5.1	5
72	Synthesis of Mesoporous γ-Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage. Energies, 2021, 14, 7809.	3.1	5

#	Article	IF	CITATIONS
73	Evaluation of ZIF-8 and ZIF-90 as Heat Storage Materials by Using Water, Methanol and Ethanol as Working Fluids. Crystals, 2021, 11, 1422.	2.2	5
74	Studies of Clinoptilolite-Rich Zeolitic Tuffs from Different Regions and Their Activity in Photodegradation of Methylene Blue. Catalysts, 2022, 12, 224.	3.5	5
75	Location of Co(II) in aluminophosphate CoAPO-CJ2. Single-crystal structure refinement. Microporous Materials, 1997, 9, 63-69.	1.6	4
76	Functionalized Porous Silicates as Catalysts for Water and Air Purification. , 2013, , 365-383.		4
77	Humanity Can Still Stop Climate Change by Implementing a New International Climate Agreement and Applying Radical New Technology. Energies, 2020, 13, 6703.	3.1	4
78	Hydrothermal synthesis and structure of a new layered zincophosphate intercalated with 3-methylaminopropylamine cations. Journal of the Serbian Chemical Society, 2005, 70, 625-634.	0.8	4
79	A Concept for Solving the Sustainability of Cities Worldwide. Energies, 2022, 15, 616.	3.1	4
80	Design and degradation of permanently porous vitamin C and zinc-based metal-organic framework. Communications Chemistry, 2022, 5, .	4.5	4
81	Study of Water Adsorption on EDTA-Modified LTA Zeolites. Nanomaterials, 2022, 12, 1352.	4.1	4
82	A kinetic study of the thermal degradation of ammonium species inside a 3D zincophosphate. Thermochimica Acta, 2006, 449, 42-46.	2.7	3
83	An evidence for a chain to network transformation during the microwave hydrothermal crystallization of an open-framework zinc terephthalate. Journal of Porous Materials, 2006, 13, 153-156.	2.6	3
84	Functionalisation and Structure Characterisation of Porous Silicates and Aluminophosphates. , 2009, , 101-126.		3
85	Structure and thermal behavior of the layered zincophosphate [NH3–CH2–CH(NH3)–CH3](ZnPO4)2. Inorganica Chimica Acta, 2009, 362, 1991-1995.	2.4	3
86	Structural investigations in pure-silica and Al-ZSM-12 with MTEA or TEA cations. Microporous and Mesoporous Materials, 2018, 263, 236-242.	4.4	3
87	Colorimetric cutoff indication of relative humidity based on selectively functionalized mesoporous silica. Sensors and Actuators B: Chemical, 2020, 316, 128138.	7.8	3
88	Production of butadiene by oxidative butane dehydrogenation with NO: effect of the oxidant species and lattice oxygen mobility in V ₂ O ₅ –WO ₃ /TiO ₂ catalyst. Catalysis Science and Technology, 2022, 12, 2990-3003.	4.1	3
89	Synthesis, physicochemical, and antimicrobial characteristics of novel poly(urethane-siloxane) network/silver ferrite nanocomposites. Journal of Materials Science, 2022, 57, 7827-7848.	3.7	3
90	Insight into the interdependence of Ni and Al in bifunctional Ni/ZSM-5 catalysts at the nanoscale. Nanoscale Advances, 2022, 4, 2321-2331.	4.6	3

#	Article	IF	CITATIONS
91	(C4H12N2)[Zn2(PO4)(HPO4)(H2PO4)], a layered zinc phosphate with intercalatedN-methylpropane-1,3-diaminium cations. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1354-m1356.	0.2	2
92	Large-Pore FAPO-36: Synthesis and Characterization ChemInform, 2003, 34, no.	0.0	1
93	Removal of Copper from Aqueous Solutions withÂZeolites and Possible Treatment of Exhaust Materials. Chemie-Ingenieur-Technik, 2021, 93, 941-948.	0.8	1
94	New Insight into Sorption Cycling Stability of Three Al-Based MOF Materials in Water Vapour. Nanomaterials, 2022, 12, 2092.	4.1	1
95	Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1: Synthesis and Characterization ChemInform, 2004, 35, no.	0.0	0
96	Microwave synthesis of nanosized VS-1 and the preparation of thin film. Studies in Surface Science and Catalysis, 2008, 174, 365-368.	1.5	0
97	On the thermal degradation of 3-methylaminopropylamine captured inside the aluminum phosphate analog of ULM-3. Journal of Thermal Analysis and Calorimetry, 2010, 101, 919-924.	3.6	0
98	Tailoring Water Adsorption Capacity of APO-Tric. Crystals, 2021, 11, 773.	2.2	0