
Wolfgang Baehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UNC119 is required for G protein trafficking in sensory neurons. Nature Neuroscience, 2011, 14, 874-880.	7.1	154
2	The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors. Journal of Biological Chemistry, 2007, 282, 8837-8847.	1.6	151
3	Photoreceptor cGMP Phosphodiesterase δSubunit (PDEÎ) Functions as a Prenyl-binding Protein. Journal of Biological Chemistry, 2004, 279, 407-413.	1.6	124
4	A Homozygous <i>PDE6D</i> Mutation in Joubert Syndrome Impairs Targeting of Farnesylated INPP5E Protein to the Primary Cilium. Human Mutation, 2014, 35, 137-146.	1.1	113
5	Guanylate cyclase-activating proteins: structure, function, and diversity. Biochemical and Biophysical Research Communications, 2004, 322, 1123-1130.	1.0	100
6	Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes). Journal of Molecular Evolution, 2004, 59, 204-217.	0.8	98
7	Trafficking of Membrane-Associated Proteins to Cone Photoreceptor Outer Segments Requires the Chromophore 11- <i>cis</i> -Retinal. Journal of Neuroscience, 2008, 28, 4008-4014.	1.7	97
8	Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10173-10178.	3.3	93
9	Changes in Biological Activity and Folding of Guanylate Cyclase-Activating Protein 1 as a Function of Calciumâ€. Biochemistry, 1998, 37, 248-257.	1.2	89
10	<i>Rpe65</i> ^{â^'/â^'} and <i>Lrat</i> ^{â^'/â^'} Mice: Comparable Models of Leber Congenital Amaurosis. , 2008, 49, 2384.		86
11	Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors. Journal of Biological Chemistry, 2016, 291, 7142-7155.	1.6	86
12	A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Research, 2008, 48, 442-452.	0.7	79
13	Naturally occurring animal models with outer retina phenotypes. Vision Research, 2009, 49, 2636-2652.	0.7	74
14	Trafficking of Membrane Proteins to Cone But Not Rod Outer Segments Is Dependent on Heterotrimeric Kinesin-II. Journal of Neuroscience, 2009, 29, 14287-14298.	1.7	73
15	Evaluation of the 17-kDa Prenyl-binding Protein as a Regulatory Protein for Phototransduction in Retinal Photoreceptors. Journal of Biological Chemistry, 2005, 280, 1248-1256.	1.6	61
16	Mistrafficking of prenylated proteins causes retinitis pigmentosa 2. FASEB Journal, 2015, 29, 932-942.	0.2	58
17	Uncoordinated (UNC)119: Coordinating the trafficking of myristoylated proteins. Vision Research, 2012, 75, 26-32.	0.7	55
18	Heterotrimeric Kinesin-2 (KIF3) Mediates Transition Zone and Axoneme Formation of Mouse Photoreceptors. Journal of Biological Chemistry, 2015, 290, 12765-12778.	1.6	53

Wolfgang Baehr

#	Article	IF	CITATIONS
19	Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Visual Neuroscience, 1997, 14, 225-232.	0.5	52
20	Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Molecular and Cellular Biochemistry, 2010, 334, 141-155.	1.4	52
21	The prenyl-binding protein PrBP/δ: A chaperone participating in intracellular trafficking. Vision Research, 2012, 75, 19-25.	0.7	45
22	Membrane Protein Transport in Photoreceptors: The Function of PDEÂ. Investigative Ophthalmology and Visual Science, 2014, 55, 8653-8666.	3.3	45
23	Kinesin family 17 (osmotic avoidance abnormalâ€3) is dispensable for photoreceptor morphology and function. FASEB Journal, 2015, 29, 4866-4880.	0.2	40
24	The small GTPase RAB28 is required for phagocytosis of cone outer segments by the murine retinal pigmented epithelium. Journal of Biological Chemistry, 2018, 293, 17546-17558.	1.6	39
25	Insights into photoreceptor ciliogenesis revealed by animal models. Progress in Retinal and Eye Research, 2019, 71, 26-56.	7.3	38
26	Ciliopathyâ€associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB Journal, 2016, 30, 3400-3412.	0.2	36
27	Ciliopathy-associated protein CEP290 modifies the severity of retinal degeneration due to loss of RPGR. Human Molecular Genetics, 2016, 25, 2005-2012.	1.4	33
28	Expression and characterization of human PDEδ and itsCaenorhabditiselegansortholog CEδ. FEBS Letters, 1998, 440, 454-457.	1.3	28
29	Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors. PLoS ONE, 2016, 11, e0161236.	1.1	28
30	The guanine nucleotide exchange factor Arf-like protein 13b is essential for assembly of the mouse photoreceptor transition zone and outer segment. Journal of Biological Chemistry, 2017, 292, 21442-21456.	1.6	28
31	<i>FLT1</i> Genetic Variation Predisposes to Neovascular AMD in Ethnically Diverse Populations and Alters Systemic FLT1 Expression. , 2014, 55, 3543.		20
32	Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. Journal of Biological Chemistry, 2019, 294, 3957-3973.	1.6	20
33	Focus on Molecules: Guanylate cyclase-activating proteins (GCAPs). Experimental Eye Research, 2009, 89, 2-3.	1.2	18
34	Domain Organization and Conformational Plasticity of the G Protein Effector, PDE6. Journal of Biological Chemistry, 2015, 290, 12833-12843.	1.6	18
35	RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations. Frontiers in Molecular Neuroscience, 2014, 7, 25.	1.4	17
36	Rhodopsin—Advances and perspectives. Vision Research, 2006, 46, 4425-4426.	0.7	16

Wolfgang Baehr

#	Article	IF	CITATIONS
37	Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biological Chemistry, 2020, 401, 573-584.	1.2	16
38	Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments. Vision Research, 2011, 51, 2304-2311.	0.7	15
39	Rescue of M-cone Function in Aged <i>Opn1mw^{â^'/â^'}</i> Mice, a Model for Late-Stage Blue Cone Monochromacy. , 2019, 60, 3644.		15
40	Deletion of the phosphatase INPP5E in the murine retina impairs photoreceptor axoneme formation and prevents disc morphogenesis. Journal of Biological Chemistry, 2021, 296, 100529.	1.6	15
41	RNAi-Mediated Gene Suppression in a GCAP1(L151F) Cone-Rod Dystrophy Mouse Model. PLoS ONE, 2013, 8, e57676.	1.1	15
42	The Function of Arf-like Proteins ARL2 and ARL3 in Photoreceptors. Advances in Experimental Medicine and Biology, 2016, 854, 655-661.	0.8	14
43	Binary Function of ARL3-GTP Revealed by Gene Knockouts. Advances in Experimental Medicine and Biology, 2018, 1074, 317-325.	0.8	11
44	Effect of conditional deletion of cytoplasmic dynein heavy chain DYNC1H1 on postnatal photoreceptors. PLoS ONE, 2021, 16, e0248354.	1.1	10
45	Retinal Cone Photoreceptors Require Phosducin-Like Protein 1 for G Protein Complex Assembly and Signaling. PLoS ONE, 2015, 10, e0117129.	1.1	10
46	Rescue of cone function in cone-only knockout mouse model with Leber congenital amaurosis phenotype. Molecular Vision, 2018, 24, 834-846.	1.1	10
47	Retina ciliopathies: From genes to mechanisms and treatment. Vision Research, 2012, 75, 1.	0.7	9
48	Knockdown of unc119c results in visual impairment and early-onset retinal dystrophy in zebrafish. Biochemical and Biophysical Research Communications, 2016, 473, 1211-1217.	1.0	7
49	Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. , 2021, 62, 23.		7
50	Gene Therapy in <i>Opn1mw^{â^'/â^'}/Opn1sw^{â^'/â^'}</i> Mice and Implications for Blue Cone Monochromacy Patients with Deletion Mutations. Human Gene Therapy, 2022, 33, 708-718.	1.4	6
51	Disease mechanisms of Xâ€ŀinked cone dystrophy caused by missense mutations in the red and green cone opsins. FASEB Journal, 2021, 35, e21927.	0.2	5
52	Ca2+ and Ca2+-interlocked membrane guanylate cyclase signal modulation of neuronal and cardiovascular signal transduction. Frontiers in Molecular Neuroscience, 2015, 8, 7.	1.4	4
53	Review: Cytoplasmic dynein motors in photoreceptors. Molecular Vision, 2021, 27, 506-517.	1.1	2
54	Retinal ganglion cells: Development, function, and disease. Vision Research, 2011, 51, 223.	0.7	0