List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1902952/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Solar Water Splitting Cells. Chemical Reviews, 2010, 110, 6446-6473.                                                                                                                                             | 47.7 | 8,307     |
| 2  | Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental<br>Iron Incorporation. Journal of the American Chemical Society, 2014, 136, 6744-6753.                        | 13.7 | 2,659     |
| 3  | Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and<br>Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society, 2015, 137,<br>3638-3648. | 13.7 | 1,587     |
| 4  | Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 2012, 134, 17253-17261.                                                                     | 13.7 | 1,403     |
| 5  | Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature<br>Materials, 2010, 9, 239-244.                                                                               | 27.5 | 1,085     |
| 6  | Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity<br>Trends and Design Principles. Chemistry of Materials, 2015, 27, 7549-7558.                                | 6.7  | 944       |
| 7  | Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. Journal of the American<br>Chemical Society, 2011, 133, 1216-1219.                                                                            | 13.7 | 561       |
| 8  | Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis<br>Activity. Journal of the American Chemical Society, 2017, 139, 11361-11364.                                 | 13.7 | 532       |
| 9  | Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes.<br>Science, 2010, 327, 185-187.                                                                                       | 12.6 | 489       |
| 10 | Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts.<br>Chemistry of Materials, 2017, 29, 120-140.                                                                  | 6.7  | 473       |
| 11 | Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes.<br>Energy and Environmental Science, 2011, 4, 3573.                                                        | 30.8 | 440       |
| 12 | Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nature Materials, 2014, 13, 81-86.                                                                                              | 27.5 | 418       |
| 13 | Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in<br>Alkaline Media. Journal of Physical Chemistry Letters, 2015, 6, 3737-3742.                                | 4.6  | 417       |
| 14 | Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials, 2015, 27, 8011-8020.              | 6.7  | 395       |
| 15 | Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature Communications, 2015, 6, 7818.                                                           | 12.8 | 300       |
| 16 | Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in<br>Photoelectrochemical Water Splitting. Accounts of Chemical Research, 2016, 49, 733-740.                                     | 15.6 | 281       |
| 17 | Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric<br>and Intrinsic Activities at Large Mass Loadings. ACS Catalysis, 2015, 5, 6680-6689.                         | 11.2 | 265       |
| 18 | Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science, 2020, 369, 1099-1103.                                                                                                    | 12.6 | 255       |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile<br>Solâ~'Gel Process. Chemistry of Materials, 2006, 18, 6391-6396.                                                                                            | 6.7  | 232       |
| 20 | Si microwire-array solar cells. Energy and Environmental Science, 2010, 3, 1037.                                                                                                                                                                          | 30.8 | 217       |
| 21 | Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline Media. ACS Catalysis, 2016, 6, 2416-2423.                                                                      | 11.2 | 199       |
| 22 | High-performance Si microwire photovoltaics. Energy and Environmental Science, 2011, 4, 866.                                                                                                                                                              | 30.8 | 196       |
| 23 | Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano<br>Letters, 2021, 21, 492-499.                                                                                                                           | 9.1  | 190       |
| 24 | Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis:<br>Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS<br>Catalysis, 2019, 9, 7-15.                            | 11.2 | 189       |
| 25 | Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 2014, 74, 25-32.                                                                                                                                                        | 5.2  | 165       |
| 26 | Redox-Enhanced Electrochemical Capacitors: Status, Opportunity, and Best Practices for Performance<br>Evaluation. ACS Energy Letters, 2017, 2, 2581-2590.                                                                                                 | 17.4 | 164       |
| 27 | Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nature Energy, 2018, 3, 46-52.                                                                                            | 39.5 | 159       |
| 28 | Harnessing the Sol–Gel Process for the Assembly of Non-Silicate Mesostructured Oxide Materials.<br>Accounts of Chemical Research, 2007, 40, 784-792.                                                                                                      | 15.6 | 152       |
| 29 | Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications, 2015, 51, 5261-5263.                                                                      | 4.1  | 138       |
| 30 | 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems. Accounts of Chemical Research, 2005, 38, 263-271.                                                                                                                         | 15.6 | 136       |
| 31 | Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Research, 2019, 12, 2288-2295.                                                                          | 10.4 | 134       |
| 32 | Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution<br>in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57,<br>12840-12844.                                  | 13.8 | 131       |
| 33 | An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In<br>Situ Optical Measurements on Operational Catalysts. Journal of Physical Chemistry Letters, 2013, 4,<br>931-935.                                          | 4.6  | 130       |
| 34 | Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on<br>Water-Splitting Photoanodes. Journal of the American Chemical Society, 2019, 141, 1394-1405.                                                                | 13.7 | 128       |
| 35 | Morphology Dynamics of Single-Layered Ni(OH) <sub>2</sub> /NiOOH Nanosheets and Subsequent Fe<br>Incorporation Studied by <i>in Situ</i> Electrochemical Atomic Force Microscopy. Nano Letters, 2017,<br>17, 6922-6926.                                   | 9.1  | 121       |
| 36 | Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous<br>Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor. Journal of<br>the American Chemical Society, 2017, 139, 9985-9993. | 13.7 | 115       |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ag/AgCl-Loaded Ordered Mesoporous Anatase for Photocatalysis. Chemistry of Materials, 2005, 17, 1409-1415.                                                                                                                                                        | 6.7  | 109       |
| 38 | Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nature Materials, 2020, 19,<br>69-76.                                                                                                                                                       | 27.5 | 106       |
| 39 | Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution Reaction. Chemistry of<br>Materials, 2017, 29, 4761-4767.                                                                                                                                | 6.7  | 105       |
| 40 | Membrane Electrolyzers for Impure-Water Splitting. Joule, 2020, 4, 2549-2561.                                                                                                                                                                                     | 24.0 | 102       |
| 41 | Potential-Sensing Electrochemical AFM Shows CoPi as a Hole Collector and Oxygen Evolution<br>Catalyst on BiVO <sub>4</sub> Water-Splitting Photoanodes. ACS Energy Letters, 2018, 3, 2286-2291.                                                                   | 17.4 | 96        |
| 42 | Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy and Environmental Science, 2017, 10, 570-579.                                                                                     | 30.8 | 91        |
| 43 | Tunable electronic interfaces betweenÂbulk semiconductors and ligand-stabilized nanoparticle<br>assemblies. Nature Materials, 2007, 6, 592-596.                                                                                                                   | 27.5 | 89        |
| 44 | Theory and Simulations of Electrocatalyst-Coated Semiconductor Electrodes for Solar Water Splitting. Physical Review Letters, 2014, 112, 148304.                                                                                                                  | 7.8  | 87        |
| 45 | Flexible, Polymerâ€Supported, Si Wire Array Photoelectrodes. Advanced Materials, 2010, 22, 3277-3281.                                                                                                                                                             | 21.0 | 85        |
| 46 | 10 â€, μ m minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid<br>growth. Applied Physics Letters, 2009, 95, .                                                                                                          | 3.3  | 84        |
| 47 | Solution-Deposited F:SnO <sub>2</sub> /TiO <sub>2</sub> as a Base-Stable Protective Layer and<br>Antireflective Coating for Microtextured Buried-Junction H <sub>2</sub> -evolving Si Photocathodes.<br>ACS Applied Materials & Interfaces, 2014, 6, 22830-22837. | 8.0  | 84        |
| 48 | High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte. ACS Applied<br>Materials & Interfaces, 2015, 7, 19978-19985.                                                                                                                    | 8.0  | 83        |
| 49 | Efficient Charge Storage in Dual-Redox Electrochemical Capacitors through Reversible<br>Counterion-Induced Solid Complexation. Journal of the American Chemical Society, 2016, 138, 9373-9376.                                                                    | 13.7 | 83        |
| 50 | Metal–Silica Hybrid Nanostructures for Surface-Enhanced Raman Spectroscopy. Advanced Materials,<br>2006, 18, 2829-2832.                                                                                                                                           | 21.0 | 82        |
| 51 | Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nature Communications, 2022, 13, .                                                                                                                           | 12.8 | 81        |
| 52 | Structural Analysis of Hybrid Titania-Based Mesostructured Composites. Journal of the American<br>Chemical Society, 2005, 127, 9721-9730.                                                                                                                         | 13.7 | 79        |
| 53 | The role of Cr doping in Ni Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution.<br>Electrochimica Acta, 2018, 265, 10-18.                                                                                                                              | 5.2  | 79        |
| 54 | Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution:<br>materials for electronic and energy applications. Journal of Materials Chemistry A, 2019, 7, 24124-24149.                                                         | 10.3 | 78        |

SHANNON BOETTCHER

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | In Situ Photopolymerization of Pyrrole in Mesoporous TiO <sub>2</sub> . Langmuir, 2010, 26, 5319-5322.                                                                                                                                                  | 3.5  | 73        |
| 56 | Potentially Confusing: Potentials in Electrochemistry. ACS Energy Letters, 2021, 6, 261-266.                                                                                                                                                            | 17.4 | 73        |
| 57 | Ionic Processes in Water Electrolysis: The Role of Ion-Selective Membranes. ACS Energy Letters, 2017, 2, 2625-2634.                                                                                                                                     | 17.4 | 68        |
| 58 | Dye-Activated Hybrid Organic/Inorganic Mesostructured Titania Waveguides. Journal of the American<br>Chemical Society, 2004, 126, 10826-10827.                                                                                                          | 13.7 | 63        |
| 59 | Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline<br>Materials and Operation. ACS Applied Materials & Interfaces, 2021, 13, 51917-51924.                                                                | 8.0  | 63        |
| 60 | Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of Stainless-Steel<br>Gas-Diffusion Layers and Internal Mechanical Pressure. ACS Energy Letters, 2021, 6, 305-312.                                                     | 17.4 | 63        |
| 61 | Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water<br>Oxidation on Catalyzed Hematite. ACS Central Science, 2017, 3, 1015-1025.                                                                                  | 11.3 | 61        |
| 62 | Photoelectrochemical Performance of CdSe Nanorod Arrays Grown on a Transparent Conducting<br>Substrate. Nano Letters, 2009, 9, 3262-3267.                                                                                                               | 9.1  | 59        |
| 63 | Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes. Journal of<br>Physical Chemistry Letters, 2015, 6, 2427-2433.                                                                                                   | 4.6  | 59        |
| 64 | Electrolytic synthesis of aqueous aluminum nanoclusters and in situ characterization by<br>femtosecond Raman spectroscopy and computations. Proceedings of the National Academy of Sciences<br>of the United States of America, 2013, 110, 18397-18401. | 7.1  | 58        |
| 65 | Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology, 2017, 28, 095711.                                                                                         | 2.6  | 58        |
| 66 | Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage. Energy and Environmental Science, 2018, 11, 2865-2875.                                                              | 30.8 | 58        |
| 67 | Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS<br>Applied Materials & Interfaces, 2019, 11, 5590-5594.                                                                                               | 8.0  | 58        |
| 68 | Field-Directed and Confined Molecular Assembly of Mesostructured Materials: Basic Principles and<br>New Opportunities. Chemistry of Materials, 2008, 20, 909-921.                                                                                       | 6.7  | 57        |
| 69 | Thin Cation-Exchange Layers Enable High-Current-Density Bipolar Membrane Electrolyzers via<br>Improved Water Transport. ACS Energy Letters, 2021, 6, 1-8.                                                                                               | 17.4 | 57        |
| 70 | One- and Two-Photon Induced Polymerization of Methylmethacrylate Using Colloidal CdS<br>Semiconductor Quantum Dots. Journal of the American Chemical Society, 2008, 130, 8280-8288.                                                                     | 13.7 | 56        |
| 71 | Modes of Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts.<br>ChemSusChem, 2019, 12, 2015-2021.                                                                                                                               | 6.8  | 55        |
| 72 | pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen <sup>2+/+</sup> Contacts<br>Through Use of Radial n <sup>+</sup> p-Si Junction Microwire Array Photoelectrodes. Journal of<br>Physical Chemistry C, 2011, 115, 594-598.              | 3.1  | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | CdSe Nanorods Dominate Photocurrent of Hybrid CdSeâ^'P3HT Photovoltaic Cell. ACS Nano, 2010, 4, 6132-6136.                                                                                                                                                                                                                                | 14.6 | 50        |
| 74 | Aqueous Solution Processing of F-Doped SnO <sub>2</sub> Transparent Conducting Oxide Films Using<br>a Reactive Tin(II) Hydroxide Nitrate Nanoscale Cluster. Chemistry of Materials, 2013, 25, 4080-4087.                                                                                                                                  | 6.7  | 50        |
| 75 | Solar energy conversion properties and defect physics of ZnSiP <sub>2</sub> . Energy and Environmental Science, 2016, 9, 1031-1041.                                                                                                                                                                                                       | 30.8 | 49        |
| 76 | Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical<br>Conductivity, and Semiconductor Morphology. ACS Energy Letters, 2018, 3, 961-969.                                                                                                                                                   | 17.4 | 47        |
| 77 | Heterogeneous electrocatalysis goes chemical. Nature Catalysis, 2021, 4, 4-5.                                                                                                                                                                                                                                                             | 34.4 | 47        |
| 78 | Synthesis of Rutile-Phase Sn <sub><i>x</i></sub> Ti <sub>1–<i>x</i></sub> O <sub>2</sub><br>Solid-Solution and (SnO <sub>2</sub> ) <sub><i>x</i></sub> /(TiO <sub>2</sub> ) <sub>1–<i>x</i></sub><br>Core/Shell Nanoparticles with Tunable Lattice Constants and Controlled Morphologies. Chemistry of<br>Materials, 2011, 23, 4920-4930. | 6.7  | 45        |
| 79 | A planar-defect-driven growth mechanism of oxygen deficient tungsten oxide nanowires. Journal of<br>Materials Chemistry A, 2014, 2, 6121-6129.                                                                                                                                                                                            | 10.3 | 45        |
| 80 | Perovskite Nanowire Extrusion. Nano Letters, 2017, 17, 6557-6563.                                                                                                                                                                                                                                                                         | 9.1  | 42        |
| 81 | Low-Cost Approaches to Ill–V Semiconductor Growth for Photovoltaic Applications. ACS Energy<br>Letters, 2017, 2, 2270-2282.                                                                                                                                                                                                               | 17.4 | 42        |
| 82 | Anode Catalysts in Anionâ€Exchangeâ€Membrane Electrolysis without Supporting Electrolyte:<br>Conductivity, Dynamics, and Ionomer Degradation. Advanced Materials, 2022, 34, .                                                                                                                                                             | 21.0 | 42        |
| 83 | Design principles for water dissociation catalysts in high-performance bipolar membranes. Nature<br>Communications, 2022, 13, .                                                                                                                                                                                                           | 12.8 | 42        |
| 84 | A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte. Journal of the Electrochemical Society, 2014, 161, A1090-A1093.                                                                                                                                                                                         | 2.9  | 41        |
| 85 | Amorphous In–Ga–Zn Oxide Semiconducting Thin Films with High Mobility from Electrochemically<br>Generated Aqueous Nanocluster Inks. Chemistry of Materials, 2015, 27, 5587-5596.                                                                                                                                                          | 6.7  | 41        |
| 86 | High-κ Lanthanum Zirconium Oxide Thin Film Dielectrics from Aqueous Solution Precursors. ACS<br>Applied Materials & Interfaces, 2017, 9, 10897-10903.                                                                                                                                                                                     | 8.0  | 41        |
| 87 | Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane<br>Electrolyzer Technology. Accounts of Materials Research, 2021, 2, 548-558.                                                                                                                                                                  | 11.7 | 41        |
| 88 | Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen<br>Evolution Reaction in Alkaline Media. ChemPhysChem, 2019, 20, 3089-3095.                                                                                                                                                               | 2.1  | 39        |
| 89 | Collaboration and Near-Peer Mentoring as a Platform for Sustainable Science Education Outreach.<br>Journal of Chemical Education, 2015, 92, 625-630.                                                                                                                                                                                      | 2.3  | 35        |
| 90 | Control of the pH-Dependence of the Band Edges of Si(111) Surfaces Using Mixed Methyl/Allyl<br>Monolayers. Journal of Physical Chemistry C, 2011, 115, 8594-8601.                                                                                                                                                                         | 3.1  | 33        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | PeakForce Scanning Electrochemical Microscopy with Nanoelectrode Probes. Microscopy Today, 2016, 24, 18-25.                                                                                    | 0.3  | 32        |
| 92  | Unidirectional Current in a Polyacetylene Hetero-ionic Junction. Journal of the American Chemical<br>Society, 2004, 126, 8666-8667.                                                            | 13.7 | 31        |
| 93  | Efficient n-GaAs Photoelectrodes Grown by Close-Spaced Vapor Transport from a Solid Source. ACS<br>Applied Materials & Interfaces, 2012, 4, 69-73.                                             | 8.0  | 31        |
| 94  | Fabrication and Electrochemical Photovoltaic Response of CdSe Nanorod Arrays. Journal of Physical<br>Chemistry C, 2008, 112, 8516-8520.                                                        | 3.1  | 30        |
| 95  | Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics. Energy and Environmental Science, 2015, 8, 278-285.       | 30.8 | 30        |
| 96  | Role of Combustion Chemistry in Low-Temperature Deposition of Metal Oxide Thin Films from Solution. Chemistry of Materials, 2017, 29, 9480-9488.                                               | 6.7  | 30        |
| 97  | Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers. Journal of<br>Materials Chemistry C, 2013, 1, 657-662.                                                          | 5.5  | 29        |
| 98  | Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution<br>in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie, 2018, 130, 13022-13026. | 2.0  | 28        |
| 99  | Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to<br>Anion-Exchange-Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2022, 14,<br>18261-18274.         | 8.0  | 28        |
| 100 | Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair<br>Distribution Function Analysis. Journal of Physical Chemistry C, 2017, 121, 25421-25429.         | 3.1  | 25        |
| 101 | What Structural Features Make Porous Carbons Work for Redox-Enhanced Electrochemical Capacitors? A Fundamental Investigation. ACS Energy Letters, 2021, 6, 854-861.                            | 17.4 | 25        |
| 102 | Oxygen stays put during water oxidation. Nature Catalysis, 2018, 1, 814-815.                                                                                                                   | 34.4 | 24        |
| 103 | Aluminum Oxide Thin Films from Aqueous Solutions: Insights from Solid-State NMR and Dielectric Response. Chemistry of Materials, 2018, 30, 7456-7463.                                          | 6.7  | 24        |
| 104 | Electrochemical Nanostructuring of n-GaAs Photoelectrodes. ACS Nano, 2013, 7, 6840-6849.                                                                                                       | 14.6 | 21        |
| 105 | Optical response of deep defects as revealed by transient photocapacitance and photocurrent spectroscopy in CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 2014, 129, 57-63.    | 6.2  | 20        |
| 106 | Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic<br>Smoothness. Journal of the American Chemical Society, 2016, 138, 16800-16808.                      | 13.7 | 20        |
| 107 | Reinvigorating electrochemistry education. IScience, 2021, 24, 102481.                                                                                                                         | 4.1  | 20        |
| 108 | Synthesis, characterization and properties of Mo6S8(4-tert-butylpyridine)6 and related M6S8L6 cluster complexes (M = Mo, W). Dalton Transactions RSC, 2002, , 3096.                            | 2.3  | 16        |

SHANNON BOETTCHER

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 109 | Minerals to Materials: Bulk Synthesis of Aqueous Aluminum Clusters and Their Use as Precursors for<br>Metal Oxide Thin Films. Chemistry of Materials, 2017, 29, 7760-7765.                                                                                                              | 6.7  | 15         |
| 110 | Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry. Sustainable Energy and Fuels, 2018, 2, 1995-2005.                                                                                                         | 4.9  | 15         |
| 111 | Electrochemical synthesis of<br>flat-[Ga <sub>13â^²x</sub> In <sub>x</sub> (μ <sub>3</sub> -OH) <sub>6</sub> (μ-OH) <sub>18</sub> (H <sub)<br>clusters as aqueous precursors for solution-processed semiconductors. Journal of Materials<br/>Chemistry C. 2014. 2. 8492-8496.</sub)<br> | •2C  | )/sub>2414 |
| 112 | Themed issue on water splitting and photocatalysis. Journal of Materials Chemistry A, 2016, 4, 2764-2765.                                                                                                                                                                               | 10.3 | 14         |
| 113 | NSF Program Benefits Schools in Need. Science, 2011, 332, 173-174.                                                                                                                                                                                                                      | 12.6 | 13         |
| 114 | Low-Temperature Steam Annealing of Metal Oxide Thin Films from Aqueous Precursors: Enhanced<br>Counterion Removal, Resistance to Water Absorption, and Dielectric Constant. Chemistry of<br>Materials, 2017, 29, 8531-8538.                                                             | 6.7  | 12         |
| 115 | Analysis of performance-limiting defects in pn junction GaAs solar cells grown by water-mediated close-spaced vapor transport epitaxy. Solar Energy Materials and Solar Cells, 2017, 159, 546-552.                                                                                      | 6.2  | 12         |
| 116 | Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution. , 2010, , .                                                                                                                                                                                         |      | 11         |
| 117 | Selective Area Epitaxy of GaAs Microstructures by Close-Spaced Vapor Transport for Solar Energy Conversion Applications. ACS Energy Letters, 2016, 1, 402-408.                                                                                                                          | 17.4 | 11         |
| 118 | Tuning Charge Transport at the Interface between Indium Phosphide and a<br>Polypyrroleâ ^ Phosphomolybdate Hybrid through Manipulation of Electrochemical Potential. Journal<br>of Physical Chemistry B, 2002, 106, 1622-1636.                                                          | 2.6  | 9          |
| 119 | Ionic Ligand Mediated Electrochemical Charging of Gold Nanoparticle Assemblies. Nano Letters, 2008,<br>8, 3404-3408.                                                                                                                                                                    | 9.1  | 9          |
| 120 | Gallium arsenide phosphide grown by close-spaced vapor transport from mixed powder sources for<br>low-cost III–V photovoltaic and photoelectrochemical devices. Journal of Materials Chemistry A, 2016,<br>4, 2909-2918.                                                                | 10.3 | 9          |
| 121 | Benchmarks and Protocols for Electrolytic, Photoelectrochemical, and Solar-Thermal<br>Water-Splitting Technologies. ACS Energy Letters, 2020, 5, 70-71.                                                                                                                                 | 17.4 | 9          |
| 122 | Purification of Residual Ni and Co Hydroxides from Feâ€Free Alkaline Electrolyte for Electrocatalysis<br>Studies. ChemElectroChem, 2022, 9, .                                                                                                                                           | 3.4  | 9          |
| 123 | Transition-Metal-Incorporated Aluminum Oxide Thin Films: Toward Electronic Structure Design in Amorphous Mixed-Metal Oxides. Journal of Physical Chemistry C, 2018, 122, 13691-13704.                                                                                                   | 3.1  | 8          |
| 124 | Controlling Catalyst–Semiconductor Contacts: Interfacial Charge Separation in p-InP Photocathodes.<br>ACS Energy Letters, 2022, 7, 541-549.                                                                                                                                             | 17.4 | 8          |
| 125 | ACS Energy Letters: Elevating Solar Fuels and Electrocatalysis Research. ACS Energy Letters, 2016, 1, 920-921.                                                                                                                                                                          | 17.4 | 7          |
| 126 | Tunable high-κ Zr <sub>x</sub> Al <sub>1â^'x</sub> O <sub>y</sub> thin film dielectrics from all-inorganic aqueous precursor solutions. RSC Advances, 2017, 7, 39147-39152.                                                                                                             | 3.6  | 7          |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Homojunction GaAs solar cells grown by close space vapor transport. , 2014, , .                                                                                                                                         |      | 6         |
| 128 | Arsenic antisite and oxygen incorporation trends in GaAs grown by water-mediated close-spaced vapor transport. Journal of Applied Physics, 2017, 121, 093102.                                                           | 2.5  | 5         |
| 129 | Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent. Journal of<br>Crystal Growth, 2019, 506, 147-155.                                                                               | 1.5  | 5         |
| 130 | Ionic-Ligand-Mediated Electrochemical Charging of Anionic Gold Nanoparticle Films and<br>Anionicâ~'Cationic Gold Nanoparticle Bilayers. Journal of Physical Chemistry C, 2010, 114, 4168-4178.                          | 3.1  | 4         |
| 131 | Towards high-efficiency GaAs thin-film solar cells grown via close space vapor transport from a solid source. , 2012, , .                                                                                               |      | 4         |
| 132 | Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source. Proceedings of SPIE, 2013, , .                                                                   | 0.8  | 4         |
| 133 | Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.                                                                                                      | 4.0  | 4         |
| 134 | Catalytic hotspots get noisy. Nature, 2017, 549, 34-35.                                                                                                                                                                 | 27.8 | 4         |
| 135 | Hydrogen-evolution-reaction kinetics pH dependence: Is it covered?. Chem Catalysis, 2022, 2, 236-238.                                                                                                                   | 6.1  | 4         |
| 136 | Understanding Surface Reactivity of Amorphous Transition-Metal-Incorporated Aluminum Oxide Thin<br>Films. Journal of Physical Chemistry C, 2019, 123, 27048-27054.                                                      | 3.1  | 3         |
| 137 | Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte.<br>Journal of Electrochemical Science and Technology, 2018, 9, 20-27.                                                   | 2.2  | 3         |
| 138 | Advanced Photoelectrochemical Characterization: Principles and Applications of Dual-Working-Electrode Photoelectrochemistry. , 2016, , 323-351.                                                                         |      | 2         |
| 139 | Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide<br>Films on Gallium Arsenide Substrates. ACS Applied Energy Materials, 2018, 1, 284-289.                                 | 5.1  | 2         |
| 140 | Understanding methanol dissociative adsorption and oxidation on amorphous oxide films. Faraday<br>Discussions, 2022, 236, 58-70.                                                                                        | 3.2  | 2         |
| 141 | Low-cost growth of IIIâ $\in$ "V layers on si using close-spaced vapor transport. , 2015, , .                                                                                                                           |      | 1         |
| 142 | Sculpting Optical Properties of Thin Film IR Filters through Nanocrystal Synthesis and Additive,<br>Solution Processing. Chemistry of Materials, 2020, 32, 8683-8693.                                                   | 6.7  | 1         |
| 143 | Energy Spotlight. ACS Energy Letters, 2020, 5, 2739-2741.                                                                                                                                                               | 17.4 | 1         |
| 144 | The Calculation of Transmission Coefficients at Heterogeneous Semiconductor Interfaces: A Case<br>Study Based on the n-InP   poly(pyrrole) Interface. Materials Research Society Symposia Proceedings,<br>2001, 679, 1. | 0.1  | 0         |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems. ChemInform, 2005, 36, no.                                                                                                               | 0.0  | 0         |
| 146 | Electrocatalytic Hot Spots in San Diego. ACS Energy Letters, 2019, 4, 2489-2490.                                                                                                                                        | 17.4 | 0         |
| 147 | Energy Spotlight. ACS Energy Letters, 2020, 5, 3265-3267.                                                                                                                                                               | 17.4 | 0         |
| 148 | Energy Spotlight. ACS Energy Letters, 2020, 5, 938-939.                                                                                                                                                                 | 17.4 | 0         |
| 149 | Correction to "Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of<br>Stainless-Steel Gas-Diffusion Layers and Internal Mechanical Pressure― ACS Energy Letters, 2021, 6,<br>2238-2239. | 17.4 | 0         |
| 150 | Nanoscale Catalyst/Semiconductor Contacts in Water-Splitting Photoelectrodes. , 0, , .                                                                                                                                  |      | 0         |
| 151 | Towards a Molecular Understanding of Dynamic Fe-based Oxygen Evolution Catalysts. , 0, , .                                                                                                                              |      | 0         |
| 152 | Electrochemistry-Induced Restructuring of Tin-Doped Indium Oxide Nanocrystal Films of Relevance to CO <sub>2</sub> Reduction. Journal of the Electrochemical Society, 2021, 168, 126521.                                | 2.9  | 0         |