Macarena Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1902897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic hydrodehalogenation of the flame retardant tetrabromobisphenol A by alumina-supported Pd, Rh and Pt catalysts. Chemical Engineering Journal Advances, 2022, 9, 100212.	5.2	2
2	Application of catalytic hydrodehalogenation in drinking water treatment for organohalogenated micropollutants removal: A review. Journal of Hazardous Materials Advances, 2022, 5, 100047.	3.0	1
3	Carbon-encapsulated iron nanoparticles as reusable adsorbents for micropollutants removal from water. Separation and Purification Technology, 2021, 257, 117974.	7.9	29
4	Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, 2021, 761, 143197.	8.0	30
5	A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater. Journal of Environmental Management, 2021, 290, 112624.	7.8	47
6	Palladium-based Catalytic Membrane Reactor for the continuous flow hydrodechlorination of chlorinated micropollutants. Applied Catalysis B: Environmental, 2021, 293, 120235.	20.2	23
7	Innovative iron oxide foams for the removal of micropollutants by Catalytic Wet Peroxide Oxidation: Assessment of long-term operation under continuous mode. Journal of Environmental Chemical Engineering, 2021, 9, 105914.	6.7	5
8	Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. Chemosphere, 2021, 283, 131085.	8.2	79
9	On the deactivation and regeneration of Pd/Al2O3 catalyst for aqueous-phase hydrodechlorination of diluted chlorpromazine solution. Catalysis Today, 2020, 356, 255-259.	4.4	5
10	Role of the pore structure of Fe/C catalysts on heterogeneous Fenton oxidation. Journal of Environmental Chemical Engineering, 2020, 8, 102921.	6.7	11
11	Boosting the catalytic activity of natural magnetite for wet peroxide oxidation. Environmental Science and Pollution Research, 2020, 27, 1176-1185.	5.3	13
12	Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions. Separation and Purification Technology, 2020, 235, 116168.	7.9	25
13	Catalytic Hydrodehalogenation of Haloacetic Acids: A Kinetic Study. Industrial & Engineering Chemistry Research, 2020, 59, 17779-17785.	3.7	7
14	Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. Catalysts, 2020, 10, 1250.	3.5	6
15	CWPO intensification by induction heating using magnetite as catalyst. Journal of Environmental Chemical Engineering, 2020, 8, 104085.	6.7	17
16	Catalyst deactivation in the hydrodechlorination of micropollutants. A case of study with neonicotinoid pesticides. Journal of Water Process Engineering, 2020, 38, 101550.	5.6	3
17	Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process. Catalysts, 2019, 9, 516.	3.5	7

18 Degradation of widespread cyanotoxins with high impact in drinking water (microcystins,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (microcystins,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 fg fg fg fg fg fg fg fg fg

Macarena Muñoz

#	Article	IF	CITATIONS
19	Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants. Separation and Purification Technology, 2019, 227, 115717.	7.9	16
20	Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part II: Activity, Nature and Stability. Catalysts, 2019, 9, 518.	3.5	3
21	Editorial Catalysts: Special Issue on Trends in Catalytic Wet Peroxide Oxidation Processes. Catalysts, 2019, 9, 918.	3.5	3
22	Effective Adsorption of Methylene Blue dye onto Magnetic Nanocomposites. Modeling and Reuse Studies. Applied Sciences (Switzerland), 2019, 9, 4563.	2.5	48
23	Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2. Chemical Engineering Journal, 2019, 376, 120265.	12.7	15
24	Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34811-34817.	5.3	10
25	Highly efficient removal of pharmaceuticals from water by well-defined carbide-derived carbons. Chemical Engineering Journal, 2018, 347, 595-606.	12.7	34
26	Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catalysis Today, 2018, 313, 142-147.	4.4	32
27	Fast degradation of diclofenac by catalytic hydrodechlorination. Chemosphere, 2018, 213, 141-148.	8.2	28
28	Stable Immobilization of Size ontrolled Bimetallic Nanoparticles in Photonic Crystal Fiber Microreactor. Chemie-Ingenieur-Technik, 2018, 90, 653-659.	0.8	8
29	Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catalysis, 2018, 8, 8244-8254.	11.2	82
30	Exploring the role of the catalytic support sorption capacity on the hydrodechlorination kinetics by the use of carbide-derived carbons. Applied Catalysis B: Environmental, 2017, 203, 591-598.	20.2	15
31	Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. Journal of Hazardous Materials, 2017, 331, 45-54.	12.4	64
32	Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology. Water Science and Technology, 2017, 75, 2216-2224.	2.5	12
33	Combining HDC and CWPO for the removal of p -chloro- m -cresol from water under ambient-like conditions. Applied Catalysis B: Environmental, 2017, 216, 20-29.	20.2	13
34	Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. Journal of Environmental Chemical Engineering, 2017, 5, 4337-4343.	6.7	35
35	Polymer-based spherical activated carbon as catalytic support for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2017, 218, 498-505.	20.2	31
36	Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Applied Catalysis B: Environmental, 2017, 203, 166-173.	20.2	61

Macarena Muñoz

#	Article	IF	CITATIONS
37	Accelerating Oxygenâ€Reduction Catalysts through Preventing Poisoning with Nonâ€Reactive Species by Using Hydrophobic Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 2257-2261.	13.8	125
38	AktivitĤsteigerung von Sauerstoffreduktionskatalysatoren durch Unterdrückung der Katalysatorvergiftung mittels hydrophober ionischer Flüssigkeiten. Angewandte Chemie, 2016, 128, 2298-2302.	2.0	10
39	Polymerâ€Based Spherical Activated Carbon as Easyâ€toâ€Handle Catalyst Support forÂHydrogenation Reactions. Chemical Engineering and Technology, 2016, 39, 276-284.	1.5	22
40	Boosting the Activity in Supported Ionic Liquid-Phase-Catalyzed Hydroformylation via Surface Functionalization of the Carbon Support. ACS Catalysis, 2016, 6, 2280-2286.	11.2	30
41	Synthesis of high surface area carbon adsorbents prepared from pine sawdust- Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption. Journal of Environmental Management, 2016, 183, 294-305.	7.8	56
42	Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. Journal of Environmental Chemical Engineering, 2016, 4, 4107-4112.	6.7	45
43	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	3.2	18
44	Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2016, 192, 1-7.	20.2	45
45	Deducing kinetic constants for the hydrodechlorination of 4-chlorophenol using high adsorption capacity catalysts. Chemical Engineering Journal, 2016, 285, 228-235.	12.7	37
46	Boosting Performance of Low Temperature Fuel Cell Catalysts by Subtle Ionic Liquid Modification. ACS Applied Materials & Interfaces, 2015, 7, 3562-3570.	8.0	90
47	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	12.7	60
48	Role of the chemical structure of ionic liquids in their ecotoxicity and reactivity towards Fenton oxidation. Separation and Purification Technology, 2015, 150, 252-256.	7.9	36
49	Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 2015, 176-177, 249-265.	20.2	593
50	Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 2611-2692.	12.8	191
51	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	4.4	64
52	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	3.2	53
53	Improved Î ³ -alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Applied Catalysis A: General, 2014, 488, 78-85.	4.3	35
54	Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 2014, 109, 34-41.	8.2	57

#	Article	IF	CITATIONS
55	Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 197-203.	20.2	22
56	Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 2013, 228, 646-654.	12.7	25
57	Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd–Fe/γ-Al2O3 catalyst. Water Research, 2013, 47, 3070-3080.	11.3	45
58	A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols. Applied Catalysis B: Environmental, 2013, 136-137, 218-224.	20.2	77
59	Triclosan breakdown by Fenton-like oxidation. Chemical Engineering Journal, 2012, 198-199, 275-281.	12.7	64
60	Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 13092-13099.	3.7	36
61	Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 2011, 190, 993-1000.	12.4	109