Bir Bhanu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1902840/bir-bhanu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

314 6,082 38 70 g-index

402 7,265 4.4 6.24 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
314	Individual recognition using gait energy image. <i>IEEE Transactions on Pattern Analysis and Machine</i> Intelligence, 2006 , 28, 316-22	13.3	1049
313	3D free-form object recognition in range images using local surface patches. <i>Pattern Recognition Letters</i> , 2007 , 28, 1252-1262	4.7	272
312	. IEEE Transactions on Aerospace and Electronic Systems, 1986 , AES-22, 364-379	3.7	211
311	Human ear recognition in 3D. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2007 , 29, 718-37	13.3	190
310	Fingerprint indexing based on novel features of minutiae triplets. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2003 , 25, 616-622	13.3	149
309	Physical models for moving shadow and object detection in video. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2004 , 26, 1079-87	13.3	133
308	Adaptive image segmentation using a genetic algorithm. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 1995 , 25, 1543-1567		127
307	Shape matching of two-dimensional objects. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1984 , 6, 137-56	13.3	117
306	Fusion of color and infrared video for moving human detection. Pattern Recognition, 2007, 40, 1771-17	8 4 .7	115
305	. IEEE Transactions on Industrial Informatics, 2012 , 8, 100-109	11.9	107
304	Representation and shape matching of 3-d objects. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1984 , 6, 340-51	13.3	101
303	Probabilistic Feature Relevance Learning for Content-Based Image Retrieval. <i>Computer Vision and Image Understanding</i> , 1999 , 75, 150-164	4.3	83
302	Genetic algorithm based feature selection for target detection in SAR images. <i>Image and Vision Computing</i> , 2003 , 21, 591-608	3.7	79
301	Integrating face and gait for human recognition at a distance in video. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2007 , 37, 1119-37		77
300	Fingerprint matching by genetic algorithms. <i>Pattern Recognition</i> , 2006 , 39, 465-477	7.7	70
299	Closed-loop object recognition using reinforcement learning. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1998 , 20, 139-154	13.3	68
298	Visual learning by coevolutionary feature synthesis. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2005 , 35, 409-25		66

(2016-2008)

297	Feature fusion of side face and gait for video-based human identification. <i>Pattern Recognition</i> , 2008 , 41, 778-795	7.7	63	
296	Recognition of articulated and occluded objects. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1999 , 21, 603-613	13.3	62	
295	High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. <i>ACS Nano</i> , 2011 , 5, 914-22	16.7	59	
294	. IEEE Transactions on Circuits and Systems for Video Technology, 2016 , 26, 776-787	6.4	56	
293	Evolutionary feature synthesis for facial expression recognition. <i>Pattern Recognition Letters</i> , 2006 , 27, 1289-1298	4.7	56	
292	Integrating relevance feedback techniques for image retrieval using reinforcement learning. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2005 , 27, 1536-51	13.3	56	
291	Person Re-Identification by Robust Canonical Correlation Analysis. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 1103-1107	3.2	54	
290	. IEEE Transactions on Evolutionary Computation, 2007 , 11, 635-650	15.6	50	
289	CAD-Based 3D Object Representation for Robot Vision. <i>Computer</i> , 1987 , 20, 19-35	1.6	48	
288	Face image super-resolution using 2D CCA. Signal Processing, 2014, 103, 184-194	4.4	46	
287	Efficient recognition of highly similar 3D objects in range images. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2009 , 31, 172-9	13.3	46	
286	Semantic Concept Co-Occurrence Patterns for Image Annotation and Retrieval. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 785-99	13.3	44	
285	Recognition of occluded objects: A cluster-structure algorithm. <i>Pattern Recognition</i> , 1987 , 20, 199-211	7.7	44	
284	Efficient smile detection by Extreme Learning Machine. <i>Neurocomputing</i> , 2015 , 149, 354-363	5.4	43	
283	Genetic Learning for Adaptive Image Segmentation 1994,		43	
282	Reference-based person re-identification 2013,		41	
281				
	Facial expression recognition using emotion avatar image 2011 ,		40	
2 80	Facial expression recognition using emotion avatar image 2011 , Sparse representation matching for person re-identification. <i>Information Sciences</i> , 2016 , 355-356, 74-89	7.7	40	

279	The specification of distributed sensing and control. <i>Journal of Field Robotics</i> , 1985 , 2, 387-396		39
278	Stochastic models for recognition of occluded targets. <i>Pattern Recognition</i> , 2003 , 36, 2855-2873	7.7	38
277	. IEEE Transactions on Aerospace and Electronic Systems, 1995 , 31, 1268-1291	3.7	37
276	. IEEE Transactions on Affective Computing, 2014 , 5, 418-431	5.7	35
275	Gabor wavelet representation for 3-D object recognition. <i>IEEE Transactions on Image Processing</i> , 1997 , 6, 47-64	8.7	33
274	Object detection in multi-modal images using genetic programming. <i>Applied Soft Computing Journal</i> , 2004 , 4, 175-201	7.5	33
273	. IEEE Transactions on Multimedia, 2014 , 16, 1090-1103	6.6	32
272	. IEEE Transactions on Aerospace and Electronic Systems, 1990 , 26, 2-11	3.7	32
271	Segmentation of images having unimodal distributions. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1982 , 4, 408-19	13.3	32
270	. IEEE Transactions on Information Forensics and Security, 2014 , 9, 2132-2143	8	31
269	Improving person re-identification by soft biometrics based reranking 2013,		30
268	Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images. <i>Medical Image Analysis</i> , 2014 , 18, 1059-69	15.4	28
267	. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3, 155-164	5.2	28
266	An Online Learned Elementary Grouping Model for Multi-target Tracking 2014 ,		27
265	Computational analysis reveals increased blood deposition following repeated mild traumatic brain injury. <i>NeuroImage: Clinical</i> , 2012 , 1, 18-28	5.3	27
264	Predicting performance of object recognition. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2000 , 22, 956-969	13.3	27
263	Image super-resolution by extreme learning machine 2012,		26
262	Object detection via feature synthesis using MDL-based genetic programming. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2005 , 35, 538-47		26

(2008-2011)

Automated ischemic lesion detection in a neonatal model of hypoxic ischemic injury. <i>Journal of Magnetic Resonance Imaging</i> , 2011 , 33, 772-81	5.6	25
Concepts learning with fuzzy clustering and relevance feedback. <i>Engineering Applications of Artificial Intelligence</i> , 2002 , 15, 123-138	7.2	24
. IEEE Sensors Journal, 2011 , 11, 676-687	4	23
Recognizing articulated objects in SAR images. <i>Pattern Recognition</i> , 2001 , 34, 469-485	7.7	23
Target indexing in SAR images using scattering centers and the Hausdorff distance. <i>Pattern Recognition Letters</i> , 1996 , 17, 1191-1198	4.7	23
Active concept learning in image databases. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2005 , 35, 450-66		22
Contour Matching for 3D Ear Recognition 2005 ,		22
A software system for automated identification and retrieval of moth images based on wing attributes. <i>Pattern Recognition</i> , 2016 , 51, 225-241	7.7	21
Recognizing target variants and articulations in synthetic aperture radar images. <i>Optical Engineering</i> , 2000 , 39, 712	1.1	21
Iris Liveness Detection by Relative Distance Comparisons 2017,		20
Human Ear Recognition by Computer. Advances in Pattern Recognition, 2008,		20
Deep Analysis of Mitochondria and Cell Health Using Machine Learning. Scientific Reports, 2018, 8, 163	54 4.9	20
Reflection symmetry-integrated image segmentation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 1827-41	13.3	19
Segmentation of natural scenes. <i>Pattern Recognition</i> , 1987 , 20, 487-496	7.7	19
Understanding Dynamic Social Grouping Behaviors of Pedestrians. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2015 , 9, 317-329	7.5	18
Reference-Based Scheme Combined With K-SVD for Scene Image Categorization. <i>IEEE Signal Processing Letters</i> , 2013 , 20, 67-70	3.2	17
Deep Triplet Embedding Representations for Liveness Detection. <i>Advances in Computer Vision and Pattern Recognition</i> , 2017 , 287-307	1.1	17
Long-Term Cross-Session Relevance Feedback Using Virtual Features. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2008 , 20, 352-368	4.2	17
	Concepts learning with fuzzy clustering and relevance feedback. Engineering Applications of Artificial Intelligence, 2002, 15, 123-138 .IEEE Sensors Journal, 2011, 11, 676-687 Recognizing articulated objects in SAR images. Pattern Recognition, 2001, 34, 469-485 Target indexing in SAR images using scattering centers and the Hausdorff distance. Pattern Recognition Letters, 1996, 17, 1191-1198 Active concept learning in image databases. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35, 450-66 Contour Matching for 3D Ear Recognition 2005, A software system for automated identification and retrieval of moth images based on wing attributes. Pattern Recognition, 2016, 51, 225-241 Recognizing target variants and articulations in synthetic aperture radar images. Optical Engineering, 2000, 39, 712 Iris Liveness Detection by Relative Distance Comparisons 2017, Human Ear Recognition by Computer. Advances in Pattern Recognition, 2008, Deep Analysis of Mitochondria and Cell Health Using Machine Learning. Scientific Reports, 2018, 8, 163 Reflection symmetry-integrated image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 1827-41 Segmentation of natural scenes. Pattern Recognition, 1987, 20, 487-496 Understanding Dynamic Social Grouping Behaviors of Pedestrians. IEEE Journal on Selected Topics in Signal Processing, 2015, 9, 317-329 Reference-Based Scheme Combined With K-SVD for Scene Image Categorization. IEEE Signal Processing, 2015, 9, 317-329 Reference-Based Scheme Combined With K-SVD for Scene Image Categorization. IEEE Signal Processing, 2017, 287-307 Deep Triplet Embedding Representations for Liveness Detection. Advances in Computer Vision and Pattern Recognition, 2017, 287-307	Anognetic Resonance Imaging, 2011, 33, 772-81 Concepts learning with fuzzy clustering and relevance feedback. Engineering Applications of Artificial Intelligence, 2002, 15, 123-138 . IEEE Sensors Journal, 2011, 11, 676-687 4 Recognizing articulated objects in SAR images. Pattern Recognition, 2001, 34, 469-485 77 Target indexing in SAR images using scattering centers and the Hausdorff distance. Pattern Recognition Letters, 1996, 17, 1191-1198 Active concept learning in image databases. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35, 450-66 Contour Matching for 3D Ear Recognition 2005, A software system for automated identification and retrieval of moth images based on wing attributes. Pattern Recognition, 2016, 51, 225-241 Recognizing target variants and articulations in synthetic aperture radar images. Optical Engineering, 2000, 39, 712 Iris Liveness Detection by Relative Distance Comparisons 2017. Human Ear Recognition by Computer. Advances in Pattern Recognition, 2008, Deep Analysis of Mitochondria and Cell Health Using Machine Learning. Scientific Reports, 2018, 8, 16354, 9 Reflection symmetry-integrated image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 1827-41 Segmentation of natural scenes. Pattern Recognition, 1987, 20, 487-496 7.7 Understanding Dynamic Social Grouping Behaviors of Pedestrians. IEEE Journal on Selected Topics in Signal Processing, 2015, 9, 317-329 Deep Triplet Embedding Representations for Liveness Detection. Advances in Computer Vision and Pattern Recognition, 2017, 287-307 Long-Term Cross-Session Relevance Feedback Using Virtual Features. IEEE Transactions on

243	Uncertain spatial data handling: Modeling, indexing and query. <i>Computers and Geosciences</i> , 2007 , 33, 42-61	4.5	17
242	Performance prediction for individual recognition by gait. Pattern Recognition Letters, 2005, 26, 615-62	2 4 4.7	17
241	. IEEE Transactions on Aerospace and Electronic Systems, 2001 , 37, 316-328	3.7	17
240	Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics. <i>PLoS ONE</i> , 2016 , 11, e0148642	3.7	17
239	Soccer: Who Has the Ball? Generating Visual Analytics and Player Statistics 2018,		17
238	Latent Fingerprint Image Segmentation Using Deep Neural Network. <i>Advances in Computer Vision and Pattern Recognition</i> , 2017 , 83-107	1.1	16
237	Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set. <i>IEEE Sensors Journal</i> , 2015 , 15, 2692-2704	4	16
236	A system for model-based object recognition in perspective aerial images. <i>Pattern Recognition</i> , 1998 , 31, 465-491	7.7	16
235	A robust two step approach for fingerprint identification. <i>Pattern Recognition Letters</i> , 2003 , 24, 2127-2	134.47	16
234	Guest Editorا Introduction: CAD-Based Robot Vision. <i>Computer</i> , 1987 , 20, 13-16	1.6	16
233	Predicting fingerprint biometrics performance from a small gallery. <i>Pattern Recognition Letters</i> , 2007 , 28, 40-48	4.7	15
232	Probabilistic Spatial Database Operations. <i>Lecture Notes in Computer Science</i> , 2003 , 140-158	0.9	15
231	Recognition of 3-D objects in range images using a butterfly multiprocessor. <i>Pattern Recognition</i> , 1989 , 22, 49-64	7.7	15
230	VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication 2011 , 335-347		15
229	EDeN: Ensemble of Deep Networks for Vehicle Classification 2017,		14
228	2010,		14
227	Delayed reinforcement learning for adaptive image segmentation and feature extraction. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 1998 , 28, 482-488		14
226	. IEEE Transactions on Aerospace and Electronic Systems, 1996 , 32, 875-897	3.7	14

(2016-2001)

225	Concepts Learning with Fuzzy Clustering and Relevance Feedback. <i>Lecture Notes in Computer Science</i> , 2001 , 102-116	0.9	14	
224	Human Recognition on Combining Kinematic and Stationary Features. <i>Lecture Notes in Computer Science</i> , 2003 , 600-608	0.9	14	
223	Image retrieval with feature selection and relevance feedback 2010,		13	
222	Recognition of walking humans in 3D: Initial results 2009 ,		13	
221	Video bioinformatics analysis of human embryonic stem cell colony growth. <i>Journal of Visualized Experiments</i> , 2010 ,	1.6	13	
220	Determining Topology in a Distributed Camera Network 2007 ,		13	
219	Exploiting azimuthal variance of scatterers for multiple-look SAR recognition 2002,		13	
218	2019,		13	
217	A comparison of techniques for camera selection and handoff in a video network 2009,		12	
216	3D free-form object recognition in range images using local surface patches 2004 ,		12	
215	A Triplet Based Approach for Indexing of Fingerprint Database for Identification. <i>Lecture Notes in Computer Science</i> , 2001 , 205-210	0.9	12	
214	Human Recognition at a Distance in Video by Integrating Face Profile and Gait. <i>Lecture Notes in Computer Science</i> , 2005 , 533-543	0.9	11	
213	Shape Matching and Image Segmentation Using Stochastic Labeling 1981,		11	
212	A Psychologically-Inspired Match-Score Fusion Model for Video-Based Facial Expression Recognition. <i>Lecture Notes in Computer Science</i> , 2011 , 341-350	0.9	11	
211	Analysis of terrain using multispectral images. Pattern Recognition, 1997, 30, 197-215	7.7	10	
210	. IEEE Transactions on Circuits and Systems for Video Technology, 2017 , 27, 2382-2394	6.4	9	
209	Analysis-by-synthesis: Pedestrian tracking with crowd simulation models in a multi-camera video network. <i>Computer Vision and Image Understanding</i> , 2015 , 134, 48-63	4.3	9	
208	. IEEE Transactions on Circuits and Systems for Video Technology, 2016 , 26, 2226-2239	6.4	9	

207	Use of Video Bioinformatics Tools in Stem Cell Toxicology 2014 , 379-402		9
206	. IEEE Transactions on Intelligent Transportation Systems, 2013 , 14, 1796-1805	6.1	9
205	Automated Classification of Skippers based on Parts Representation. <i>American Entomologist</i> , 2008 , 54, 228-231	0.6	9
204	A study on view-insensitive gait recognition 2005,		9
203	Adaptive target recognition. <i>Machine Vision and Applications</i> , 2000 , 11, 289-299	2.8	9
202	Intrinsic characteristics as the interface between CAD and machine vision systems. <i>Pattern Recognition Letters</i> , 1985 , 3, 425-430	4.7	9
201	Words alignment based on association rules for cross-domain sentiment classification. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2018 , 19, 260-272	2.2	8
2 00	Super resolution for astronomical observations. <i>Astrophysics and Space Science</i> , 2018 , 363, 1	1.6	8
199	SAR object classification using the DAE with a modified triplet restriction. <i>IET Radar, Sonar and Navigation</i> , 2019 , 13, 1081-1091	1.4	8
198	Bio-Driven Cell Region Detection in Human Embryonic Stem Cell Assay. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2014 , 11, 604-11	3	8
197	Symmetry integrated region-based image segmentation 2009,		8
196	Functional template-based SAR image segmentation. Pattern Recognition, 2004, 37, 61-77	7.7	8
195	Computational Algorithms for Fingerprint Recognition 2004,		8
194	Local discriminative learning for pattern recognition. <i>Pattern Recognition</i> , 2001 , 34, 139-150	7.7	8
193	Increasing the discrimination of synthetic aperture radar recognition models. <i>Optical Engineering</i> , 2002 , 41, 3298	1.1	8
192	Latent Fingerprint Image Segmentation Using Fractal Dimension Features and Weighted Extreme Learning Machine Ensemble 2016 ,		8
191	Coevolution and Linear Genetic Programming for Visual Learning. <i>Lecture Notes in Computer Science</i> , 2003 , 332-343	0.9	8
190	Automatic cell region detection by k-means with weighted entropy 2013,		7

189	On the accuracy and robustness of deep triplet embedding for fingerprint liveness detection 2017 ,		7	
188	2012,		7	
187	Automatic symmetry-integrated brain injury detection in MRI sequences 2009,		7	
186	Detection of non-dynamic blebbing single unattached Human Embryonic Stem Cells 2012 ,		7	
185	Anomalous activity classification in the distributed camera network 2008,		7	
184	Super-Resolved Facial Texture Under Changing Pose and Illumination 2007,		7	
183	Learning models for predicting recognition performance 2005,		7	
182	. IEEE Transactions on Aerospace and Electronic Systems, 2001 , 37, 876-888	3.7	7	
181	Qualitative Motion Understanding 1992 ,		7	
180	Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation. <i>Journal of Field Robotics</i> , 1992 , 9, 817-842		7	
179	A new patch selection method based on parsing and saliency detection for person re-identification. <i>Neurocomputing</i> , 2020 , 374, 86-99	5.4	7	
178	Background suppressing Gabor energy filtering. Pattern Recognition Letters, 2015, 52, 40-47	4.7	6	
177	Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury. <i>IEEE Transactions on Medical Imaging</i> , 2014 , 33, 11-22	11.7	6	
176	Predictive models for multibiometric systems. <i>Pattern Recognition</i> , 2014 , 47, 3779-3792	7.7	6	
175	Soft Biometrics Integrated Multi-target Tracking 2014 ,		6	
174	Real-Time Pedestrian Tracking with Bacterial Foraging Optimization 2012,		6	
173	Facial emotion recognition with expression energy 2012,		6	
172	Age Classification Base on Gait Using HMM 2010 ,		6	

171	. IEEE Transactions on Intelligent Transportation Systems, 2010 , 11, 423-440	6.1	6
170	Human Embryonic Stem Cell Detection by Spatial Information and Mixture of Gaussians 2011,		6
169	Coevolutionary feature synthesized EM algorithm for image retrieval 2005,		6
168	Performance Evaluation and Prediction for 3D Ear Recognition. <i>Lecture Notes in Computer Science</i> , 2005 , 748-757	0.9	6
167	VLSI design and implementation of a real-time image segmentation processor. <i>Machine Vision and Applications</i> , 1990 , 3, 21-44	2.8	6
166	Removing Moving Objects from Point Cloud Scenes. Lecture Notes in Computer Science, 2013, 50-58	0.9	6
165	Dyfusion: Dynamic IR/RGB Fusion for Maritime Vessel Recognition 2018,		6
164	DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC. <i>PLoS ONE</i> , 2019 , 14, e0212849	3.7	5
163	A dense flow-based framework for real-time object registration under compound motion. <i>Pattern Recognition</i> , 2017 , 63, 279-290	7.7	5
162	Novel representation for driver emotion recognition in motor vehicle videos 2017,		5
161	Dynamic low-level context for the detection of mild traumatic brain injury. <i>IEEE Transactions on Biomedical Engineering</i> , 2015 , 62, 145-53	5	5
160	Zapping Index:Using Smile to Measure Advertisement Zapping Likelihood. <i>IEEE Transactions on Affective Computing</i> , 2014 , 5, 432-444	5.7	5
159	. IEEE Transactions on Intelligent Transportation Systems, 2014 , 15, 563-578	6.1	5
158	Human Recognition at a Distance in Video. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 ,	1.1	5
157	Boosting Face Recognition in Real-World Surveillance Videos 2012,		5
156	Super-Resolution of Facial Images in Video with Expression Changes 2008,		5
155	Model-based recognition of articulated objects. Pattern Recognition Letters, 2002, 23, 1019-1029	4.7	5
154	Generic object recognition using multiple representations. <i>Image and Vision Computing</i> , 1996 , 14, 323-3	387	5

153	Multiclass Object Recognition Based on Texture Linear Genetic Programming 2007 , 291-300		5
152	Pose-Guided R-CNN for Jersey Number Recognition in Sports 2019 ,		5
151	[Regular Paper] MVPNets: Multi-viewing Path Deep Learning Neural Networks for Magnification Invariant Diagnosis in Breast Cancer 2018 ,		5
150	Latent Fingerprint Image Quality Assessment Using Deep Learning 2018,		5
149	Computational Analysis: A Bridge to Translational Stroke Treatment 2012 , 881-909		5
148	People Tracking in Camera Networks: Three Open Questions. <i>Computer</i> , 2015 , 48, 78-86	1.6	4
147	Improving action units recognition using dense flow-based face registration in video 2013,		4
146	2013,		4
145	Auction protocol for camera active control 2010 ,		4
144	VideoWeb: Design of a wireless camera network for real-time monitoring of activities 2009,		4
144	VideoWeb: Design of a wireless camera network for real-time monitoring of activities 2009 , Feature synthesized EM algorithm for image retrieval. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2008 , 4, 1-24	3.4	4
	Feature synthesized EM algorithm for image retrieval. ACM Transactions on Multimedia Computing,	3.4	
143	Feature synthesized EM algorithm for image retrieval. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2008 , 4, 1-24	0.9	4
143	Feature synthesized EM algorithm for image retrieval. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2008 , 4, 1-24 Hybrid coevolutionary algorithms vs. SVM algorithms 2007 , Feature Synthesis Using Genetic Programming for Face Expression Recognition. <i>Lecture Notes in</i>		4
143 142 141	Feature synthesized EM algorithm for image retrieval. ACM Transactions on Multimedia Computing, Communications and Applications, 2008, 4, 1-24 Hybrid coevolutionary algorithms vs. SVM algorithms 2007, Feature Synthesis Using Genetic Programming for Face Expression Recognition. Lecture Notes in Computer Science, 2004, 896-907	0.9	4 4
143 142 141 140	Feature synthesized EM algorithm for image retrieval. ACM Transactions on Multimedia Computing, Communications and Applications, 2008, 4, 1-24 Hybrid coevolutionary algorithms vs. SVM algorithms 2007, Feature Synthesis Using Genetic Programming for Face Expression Recognition. Lecture Notes in Computer Science, 2004, 896-907 An Integrated Prediction Model for Biometrics. Lecture Notes in Computer Science, 2005, 355-364	0.9	4 4
143 142 141 140	Feature synthesized EM algorithm for image retrieval. ACM Transactions on Multimedia Computing, Communications and Applications, 2008, 4, 1-24 Hybrid coevolutionary algorithms vs. SVM algorithms 2007, Feature Synthesis Using Genetic Programming for Face Expression Recognition. Lecture Notes in Computer Science, 2004, 896-907 An Integrated Prediction Model for Biometrics. Lecture Notes in Computer Science, 2005, 355-364 A system for model-based recognition of articulated objects	0.9	4 4 4

135	Automated spatio-temporal analysis of dendritic spines and related protein dynamics. <i>PLoS ONE</i> , 2017 , 12, e0182958	3.7	4
134	Ensemble learning of model hyperparameters and spatiotemporal data for calibration of low-cost PM sensors. <i>Mathematical Biosciences and Engineering</i> , 2019 , 16, 6858-6873	2.1	4
133	Defending Black Box Facial Recognition Classifiers Against Adversarial Attacks 2020,		4
132	Understanding pollen tube growth dynamics using the Unscented Kalman Filter. <i>Pattern Recognition Letters</i> , 2016 , 72, 100-108	4.7	4
131	Video-based kinetic analysis of calcification in live osteogenic human embryonic stem cell cultures reveals the developmentally toxic effect of Snus tobacco extract. <i>Toxicology and Applied Pharmacology</i> , 2019 , 363, 111-121	4.6	4
130	Improve Transmission by Designing Filters for Image Dehazing 2018,		4
129	Patch Based Latent Fingerprint Matching Using Deep Learning 2018 ,		4
128	Learning Features for Object Recognition. Lecture Notes in Computer Science, 2003, 2227-2239	0.9	4
127	Model-Based Human Recognition Down and 3D Gait. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 65-94	1.1	4
126	Attributes co-occurrence pattern mining for video-based person re-identification 2017,		3
125	Dynamic bi-modal fusion of images for the segmentation of pollen tubes in video 2015,		3
124	Improving bag-of-words scheme for scene categorization. <i>Journal of China Universities of Posts and Telecommunications</i> , 2012 , 19, 166-171		3
123	Automated identification and retrieval of moth images with semantically related visual attributes on the wings 2013 ,		3
122	Improving large-scale face image retrieval using multi-level features 2013,		3
121	Tracking pedestrians with bacterial foraging optimization swarms 2011,		3
120	Large-Scale Automated Identification and Quality Control of Exfoliated and CVD Graphene via Image Processing Technique. <i>ECS Transactions</i> , 2010 , 33, 201-209	1	3
119	3D Human Body Modeling Using Range Data 2010 ,		3
118	Symmetry-integrated injury detection for brain MRI 2009,		3

117	Task-oriented camera assignment in a video network 2009 ,		3
116	Continuous Learning of a Multilayered Network Topology in a Video Camera Network. <i>Eurasip Journal on Image and Video Processing</i> , 2009 , 2009, 1-19	2.5	3
115	Face recognition in video with closed-loop super-resolution 2011,		3
114	A biologically inspired approach for fusing facial expression and appearance for emotion recognition 2012 ,		3
113	Performance characterization of a model-based SAR target recognition system using invariants 1997 , 3070, 305		3
112	How current BNs fail to represent evolvable pattern recognition problems and a proposed solution 2008 ,		3
111	Synthesizing feature agents using evolutionary computation. <i>Pattern Recognition Letters</i> , 2004 , 25, 15	1941,53	31 3
110	Independent feature analysis for image retrieval. Pattern Recognition Letters, 2001, 22, 63-74	4.7	3
109	Performance modeling of feature-based classification in SAR imagery 1998,		3
108	Learning to Perceive Objects for Autonomous Navigation. <i>Autonomous Robots</i> , 1999 , 6, 187-201	3	3
107	Learning to Perceive Objects for Autonomous Navigation. <i>Autonomous Robots</i> , 1999 , 6, 187-201 Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing</i> , 1988 , 41, 306-322	3	3
	Approximation of displacement fields using wavefront region growing. Computer Vision, Graphics,	3	
107	Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing</i> , 1988 , 41, 306-322 Fine-Grained Visual Dribbling Style Analysis for Soccer Videos With Augmented Dribble Energy	6.4	3
107	Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing,</i> 1988 , 41, 306-322 Fine-Grained Visual Dribbling Style Analysis for Soccer Videos With Augmented Dribble Energy Image 2019 , An Automated System for Generating Tactical Performance Statistics for Individual Soccer Players		3
107 106 105	Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing,</i> 1988 , 41, 306-322 Fine-Grained Visual Dribbling Style Analysis for Soccer Videos With Augmented Dribble Energy Image 2019 , An Automated System for Generating Tactical Performance Statistics for Individual Soccer Players From Videos. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 31, 632-646 Extraction of Blebs in Human Embryonic Stem Cell Videos. <i>IEEE/ACM Transactions on Computational</i>	6.4	3 3
107 106 105	Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing,</i> 1988 , 41, 306-322 Fine-Grained Visual Dribbling Style Analysis for Soccer Videos With Augmented Dribble Energy Image 2019 , An Automated System for Generating Tactical Performance Statistics for Individual Soccer Players From Videos. <i>IEEE Transactions on Circuits and Systems for Video Technology,</i> 2021 , 31, 632-646 Extraction of Blebs in Human Embryonic Stem Cell Videos. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2016 , 13, 678-88 Context guided belief propagation for remote sensing image classification. <i>Applied Optics</i> , 2015 ,	6.4	3 3 2
107 106 105 104	Approximation of displacement fields using wavefront region growing. <i>Computer Vision, Graphics, and Image Processing,</i> 1988, 41, 306-322 Fine-Grained Visual Dribbling Style Analysis for Soccer Videos With Augmented Dribble Energy Image 2019, An Automated System for Generating Tactical Performance Statistics for Individual Soccer Players From Videos. <i>IEEE Transactions on Circuits and Systems for Video Technology,</i> 2021, 31, 632-646 Extraction of Blebs in Human Embryonic Stem Cell Videos. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics,</i> 2016, 13, 678-88 Context guided belief propagation for remote sensing image classification. <i>Applied Optics,</i> 2015, 54, 3372-82 Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.	6.4	3 3 2 2

99	Live Imaging and Video Bioinformatics. Computational Biology, 2015, 3-12	0.7	2
98	Guest Editorial Special Issue on Facial Biometrics in the Wild. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 2019-2023	8	2
97	Multi-camera Pedestrian Tracking using Group Structure 2014 ,		2
96	Integrated Model for Understanding Pollen Tube Growth in Video 2014,		2
95	Unified Face Representation for Individual Recognition in Surveillance Videos. <i>Augmented Vision and Reality</i> , 2014 , 123-136		2
94	Soft-Biometrics and Reference Set Integrated Model for Tracking Across Cameras 2014 , 211-230		2
93	Optimizing crowd simulation based on real video data 2013,		2
92	Improved image super-resolution by Support Vector Regression 2011,		2
91	Vehicle logo super-resolution by canonical correlation analysis 2012,		2
90	Semantic-visual concept relatedness and co-occurrences for image retrieval 2012,		2
89	ORACLE: An Integrated Learning Approach for Object Recognition. <i>International Journal of Pattern Recognition and Artificial Intelligence</i> , 1997 , 11, 961-990	1.1	2
88	Composite class models for SAR recognition 2003 , 5095, 284		2
87	Hierarchical multi-sensor image registration using evolutionary computation 2005,		2
86	Validation of SAR ATR performance prediction using learned distortion models 2000,		2
85	3-D model building for computer vision. <i>Pattern Recognition Letters</i> , 1987 , 5, 349-356	4.7	2
84	Evaluation Of Automatic Target Recognition Algorithms 1984 , 0435, 18		2
83	Recognition of walking humans in 3D: Initial results 2009 ,		2
82	Human Recognition at a Distance in Video by Integrating Face Profile and Gait 2007 , 165-181		2

81	Generic object recognition using multiple representations 1996 , 14, 323-323		2
80	Image segmentation Techniques 1994 , 15-24		2
79	Baseline Adaptive Image Segmentation Using a Genetic Algorithm 1994 , 39-59		2
78	Multi-level cross-view consistent feature learning for person re-identification. <i>Neurocomputing</i> , 2021 , 435, 1-14	5.4	2
77	. IEEE Transactions on Circuits and Systems for Video Technology, 2016 , 1-1	6.4	2
76	Physical Features and Deep Learning-based Appearance Features for Vehicle Classification from Rear View Videos. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 1096-1108	6.1	2
75	Multi-label Classification of Stem Cell Microscopy Images Using Deep Learning 2018,		2
74	DeephESC: An Automated System for Generating and Classification of Human Embryonic Stem Cells 2018 ,		2
73	DeepDriver: Automated System For measuring Valence and Arousal in Car Driver Videos 2018,		2
72	Deepagent: An Algorithm Integration Approach for Person Re-Identification 2018,		2
71	Learning Features for Fingerprint Classification. Lecture Notes in Computer Science, 2003, 318-326	0.9	2
70	Spatio-temporal pattern recognition of dendritic spines and protein dynamics using live multichannel fluorescence microscopy 2016 ,		1
69	Guest Editorial Special Issue on Distributed Smart Sensing for Mobile Vision. <i>IEEE Sensors Journal</i> , 2015 , 15, 2631-2631	4	1
68	Comparison of texture features for human embryonic stem cells with bio-inspired multi-class support vector machine 2014 ,		1
67	MFSC: A new shape descriptor with robustness to deformations 2013 ,		1
66	Representative reference-set and betweenness centrality for scene image categorization 2013,		1
65	An Investigation into Feature-Level Fusion of Face and Fingerprint Biometrics120-142		1
64	Adaptive Multibiometric Systems143-170		1

63	Prediction for Fusion of Biometrics Systems323-362	1
62	Predicting Performance in Large-Scale Identification Systems by Score Resampling363-388	1
61	Multi-object tracking in non-stationary video using bacterial foraging swarms 2009,	1
60	Codebook optimization using word activation forces for scene categorization 2012,	1
59	Utility-based dynamic camera assignment and hand-off in a video network 2008,	1
58	Bayesian based 3D shape reconstruction from video 2008,	1
57	Performance modeling of vote-based object recognition 2003,	1
56	MDL-based Genetic Programming for Object Detection 2003,	1
55	MULTIPLE LOOK ANGLE SAR RECOGNITION. <i>International Journal of Image and Graphics</i> , 2004 , 04, 85-980.5	1
54	Gait Recognition by Combining Classifiers Based on Environmental Contexts. <i>Lecture Notes in Computer Science</i> , 2005 , 416-425	1
53	Robust fingerprint identification	1
52	Model Based Segmentation Of Flir Images 1984 , 0504, 10	1
51	Stochastic Recognition of Occluded Objects. Combinatorial Optimization, 2003, 73-103	1
50	Methods for Improving the Performance of an SAR Recognition System 2005 , 39-69	1
49	Understanding Growth of Pollen Tube in Video. <i>Computational Biology</i> , 2015 , 201-213 0.7	1
48	Learning-integrated Interactive Image Segmentation. <i>Natural Computing Series</i> , 2003 , 863-895 2.5	1
47	Activity and Individual Human Recognition in Infrared Imagery 2010 , 224-236	1
46	A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network 2011 , 69-83	1

45	Reference-Based Pose-Robust Face Recognition 2016 , 249-278		1
44	Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky 2021,		1
43	HESCNET: A Synthetically Pre-Trained Convolutional Neural Network for Human Embryonic Stem Cell Colony Classification 2018 ,		1
42	An Unbiased Temporal Representation for Video-Based Person Re-Identification 2018,		1
41	VideoWeb: Optimizing a Wireless Camera Network for Real-time Surveillance 2011, 321-334		1
40	Fingerprint Identification 2008, 1		О
39	Coevolutionary Feature Learning for Object Recognition 2003, 224-238		О
38	Modeling and Classifying Tip Dynamics of Growing Cells in Video. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 1369-1373	3.2	O
37	Local Invariance Representation Learning Algorithm with Multi-layer Extreme Learning Machine. <i>Lecture Notes in Computer Science</i> , 2016 , 505-513	0.9	О
36	Video-based calcification assay: A novel method for kinetic analysis of osteogenesis in live cultures. <i>MethodsX</i> , 2021 , 8, 101265	1.9	O
35	Unbiased Spatio-Temporal Representation with Uncertainty Control for Person Re-identification. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2022 , 1-1	3	O
34	A Machine Learning-Based Ensemble Framework for Forecasting PM2.5 Concentrations in Puli, Taiwan. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 2484	2.6	О
33	Learning small gallery size for prediction of recognition performance on large populations. <i>Pattern Recognition</i> , 2013 , 46, 3533-3547	7.7	
32	Identification and Retrieval of Moth Images Based on Wing Patterns. Computational Biology, 2015, 349	-36. 9	
31	Large-Area Industrial-Scale Identification and Quality Control of Graphene. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1344, 1		
30	Multiple Projector Camera System for Three-Dimensional Gait Recognition173-205		
29	Design and Optimization of the VideoWeb Wireless Camera Network. <i>Eurasip Journal on Image and Video Processing</i> , 2010 , 2010, 1-13	2.5	
28	Model-Free Gait-Based Human Recognition in Video. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 25-56	1.1	

27	A Comparison of Classification- and Indexing-Based Approaches for Fingerprint Identification 365-382	
26	Evolutionary Sensor Fusion for Security. <i>Advanced Sciences and Technologies for Security Applications</i> , 2006 , 245-269	0.6
25	A Theoretical Framework for Predicting Performance of Object Recognition 2005, 1-37	
24	Special issue on computer vision beyond the visible spectrum. <i>Machine Vision and Applications</i> , 2000 , 11, 265-266	2.8
23	Pattern classification based on local learning. Lecture Notes in Computer Science, 1998, 882-889	0.9
22	Stochastic Models for Recognition of Occluded Objects. <i>Lecture Notes in Computer Science</i> , 2000 , 560-5	57 0 .9
21	Cooperative Coevolution Fusion for Moving Object Detection. <i>Lecture Notes in Computer Science</i> , 2004 , 587-589	0.9
20	Intrinsic Characteristics as the Interface Between CAD and Machine Vision Systems 1987 , 461-470	
19	Independent Feature Analysis for Image Retrieval. Lecture Notes in Computer Science, 1999, 103-115	0.9
18	Database-Retrieval Oriented Approach for Model-Based Object Recognition 1999 , 23-32	
17	Video Bioinformatics Databases and Software. Computational Biology, 2015, 313-328	0.7
16	Quantitative Analyses Using Video Bioinformatics and Image Analysis Tools During Growth and Development in the Multicellular Fungus Neurospora crassa. <i>Computational Biology</i> , 2015 , 237-250	0.7
15	High- and Low-Level Contextual Modeling for the Detection of Mild Traumatic Brain Injury. <i>Computational Biology</i> , 2015 , 59-76	0.7
14	Bio-Inspired Segmentation and Detection Methods for Human Embryonic Stem Cells. <i>Computational Biology</i> , 2015 , 135-150	0.7
13	Dynamic Camera Assignment and Handoff 2009 , 333-357	
12	Feature Level Fusion of Face and Gait at a Distance. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 209-232	1.1
11	Match Score Level Fusion of Face and Gait at a Distance. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 185-207	1.1
10	Fusion of Color/Infrared Video for Human Detection. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 95-114	1.1

LIST OF PUBLICATIONS

9	Super-Resolution of Facial Images in Video at a Distance. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 117-148	1.1
8	Evaluating Quality of Super-Resolved Face Images. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 149-164	1.1
7	Gait Representations in Video. Advances in Computer Vision and Pattern Recognition, 2010, 13-24	1.1
6	Integrating Face Profile and Gait at a Distance. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 167-184	1.1
5	Discrimination Analysis for Model-Based Gait Recognition. <i>Advances in Computer Vision and Pattern Recognition</i> , 2010 , 57-64	1.1
4	Multimodal Biometrics Fusion for Human Recognition in Video 2010 , 414-447	
3	Bargaining Strategies for Camera Selection in a Video Network. <i>Wireless Networks and Mobile Communications</i> , 2011 , 357-375	
2	AUCTION-BASED DYNAMIC CAMERA GROUPING WITH ACTIVE CONTROL. Series in Computer Vision, 2011 , 357-375	

Exploiting Crowd Synthesis for Multi-camera Human Tracking **2014**, 283-298