Heikki Juhani Ruskoaho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1902611/publications.pdf Version: 2024-02-01

53
ndex
392
authors

#	Article	IF	CITATIONS
1	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	14.9	13
2	Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cellâ€derived cardiomyocytes. Journal of Physiology, 2022, 600, 483-507.	2.9	8
3	Cholecystokinin peptide signaling is regulated by a TBX5-MEF2 axis in the heart. Peptides, 2021, 136, 170459.	2.4	4
4	GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line. Stem Cell Research and Therapy, 2021, 12, 190.	5.5	7
5	Domain-Independent Inhibition of CBP/p300 Attenuates α-Synuclein Aggregation. ACS Chemical Neuroscience, 2021, 12, 2273-2279.	3.5	7
6	Targeting GATA4 for cardiac repair. IUBMB Life, 2020, 72, 68-79.	3.4	19
7	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	5.6	42
8	A novel dual reporter embryonic stem cell line for toxicological assessment of teratogen-induced perturbation of anterior–posterior patterning of the heart. Archives of Toxicology, 2020, 94, 631-645.	4.2	10
9	Distinct regulation of cardiac fibroblast proliferation and transdifferentiation by classical and novel protein kinase C isoforms: possible implications for new antifibrotic therapies. Molecular Pharmacology, 2020, 99, MOLPHARM-AR-2020-000094.	2.3	7
10	Circulating protein biomarkers predict incident hypertensive heart failure independently of Nâ€ŧerminal proâ€Bâ€ŧype natriuretic peptide levels. ESC Heart Failure, 2020, 7, 1891-1899.	3.1	7
11	GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Archives of Toxicology, 2020, 94, 2113-2130.	4.2	18
12	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
13	Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin Ilâ€induced hypertension in rats. Basic and Clinical Pharmacology and Toxicology, 2020, 127, 178-195.	2.5	12
14	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Interfaces, 2020, 12, 6899-6909.) 227 Td (s 8.0	sebacate)/Na 57
15	Pharmacological Protein Kinase C Modulators Reveal a Pro-hypertrophic Role for Novel Protein Kinase C Isoforms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Pharmacology, 2020, 11, 553852.	3.5	8
16	Synthesis, Identification, and Structure–Activity Relationship Analysis of GATA4 and NKX2-5 Protein–Protein Interaction Modulators. Journal of Medicinal Chemistry, 2019, 62, 8284-8310.	6.4	18
17	Inhibition of let-7c Regulates Cardiac Regeneration after Cryoinjury in Adult Zebrafish. Journal of Cardiovascular Development and Disease, 2019, 6, 16.	1.6	5
18	Connective Tissue Growth Factor Inhibition Enhances Cardiac Repair and Limits Fibrosis After Myocardial Infarction. JACC Basic To Translational Science, 2019, 4, 83-94.	4.1	48

Ηεικκι Juhani Ruskoaho

#	Article	IF	CITATIONS
19	Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovascular Disorders, 2019, 19, 306.	1.7	18
20	Cellular Internalization–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Proteinâ€Mediated Protection of Stem Cells. Small, 2019, 15, e1804332.	10.0	51
21	SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Scientific Reports, 2018, 8, 1160.	3.3	13
22	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	14.9	60
23	Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Scientific Reports, 2018, 8, 4733.	3.3	51
24	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	3.3	29
25	Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds. Archives of Toxicology, 2018, 92, 2897-2911.	4.2	26
26	Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease. Current Cardiology Reviews, 2018, 14, 264-271.	1.5	21
27	Identification of cardiomyocyte-enriched long non-coding RNAs as potential targets for induction of cardiac regeneration. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-3-46.	0.0	0
28	Stem cells are the most sensitive screening tool to identify toxicity of GATA4- targeted small-molecule compounds. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-9-32.	0.0	0
29	Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. Journal of Medicinal Chemistry, 2017, 60, 7781-7798.	6.4	46
30	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
31	Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. Cell and Tissue Research, 2017, 367, 369-385.	2.9	10
32	Targeting vasoactive peptides for managing calcific aortic valve disease. Annals of Medicine, 2017, 49, 63-74.	3.8	14
33	Mitogenâ€activated protein kinase p38 target regenerating isletâ€derived 3 <i>γ</i> expression is upregulated in cardiac inflammatory response in the rat heart. Physiological Reports, 2016, 4, e12996.	1.7	6
34	Neoplastic extracellular matrix environment promotes cancer invasion in vitro. Experimental Cell Research, 2016, 344, 229-240.	2.6	13
35	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	11.4	72
36	Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell and Tissue Research, 2016, 365, 563-581.	2.9	617

#	Article	IF	CITATIONS
37	Effect of vasoactive peptides in Tetrahymena: chemotactic activities of adrenomedullin, proadrenomedullin N-terminal 20 peptide (PAMP) and calcitonin gene-related peptide (CGRP). Molecular and Cellular Biochemistry, 2016, 411, 271-280.	3.1	2
38	TSC-22 up-regulates collagen 3a1 gene expression in the rat heart. BMC Cardiovascular Disorders, 2015, 15, 122.	1.7	2
39	WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function. PLoS ONE, 2015, 10, e0124907.	2.5	7
40	The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS ONE, 2015, 10, e0130502.	2.5	16
41	Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS ONE, 2015, 10, e0144145.	2.5	25
42	Effects of oxonic acid-induced hyperuricemia on mesenteric artery tone and cardiac load in experimental renal insufficiency. BMC Nephrology, 2015, 16, 35.	1.8	5
43	Bone morphogenetic protein-2 â^' A potential autocrine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes. Molecular and Cellular Endocrinology, 2015, 399, 9-21.	3.2	11
44	Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms. PLoS ONE, 2014, 9, e93473.	2.5	82
45	Characterization of the Regulatory Mechanisms of Activating Transcription Factor 3 by Hypertrophic Stimuli in Rat Cardiomyocytes. PLoS ONE, 2014, 9, e105168.	2.5	20
46	Calcium Carbonate versus Sevelamer Hydrochloride as Phosphate Binders after Long-Term Disease Progression in 5/6 Nephrectomized Rats. Advances in Nephrology, 2014, 2014, 1-10.	0.2	0
47	Inhibition of Letâ€7 micro <scp>RNA</scp> attenuates myocardial remodeling and improves cardiac function postinfarction in mice. Pharmacology Research and Perspectives, 2014, 2, e00056.	2.4	49
48	InÂvivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35, 8394-8405.	11.4	73
49	p38α regulates SERCA2a function. Journal of Molecular and Cellular Cardiology, 2014, 67, 86-93.	1.9	20
50	(Pro)renin Receptor Triggers Distinct Angiotensin II-Independent Extracellular Matrix Remodeling and Deterioration of Cardiac Function. PLoS ONE, 2012, 7, e41404.	2.5	39
51	Intramyocardial BNP Gene Delivery Improves Cardiac Function Through Distinct Context-Dependent Mechanisms. Circulation: Heart Failure, 2011, 4, 483-495.	3.9	42
52	Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovascular Research, 2011, 89, 204-213.	3.8	62
53	GATA-4 Is an Angiogenic Survival Factor of the Infarcted Heart. Circulation: Heart Failure, 2010, 3, 440-450.	3.9	62
54	A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart. Blood Pressure, 2010, 19, 54-63.	1.5	7

#	Article	IF	CITATIONS
55	Divergent Effects of Losartan and Metoprolol on Cardiac Remodeling, Câ€kit ⁺ Cells, Proliferation and Apoptosis in the Left Ventricle after Myocardial Infarction. Clinical and Translational Science, 2009, 2, 422-430.	3.1	16
56	Upregulation of cardiac matrix Gla protein expression in response to hypertrophic stimuli. Blood Pressure, 2009, 18, 286-293.	1.5	1
57	The Effect of Aminophylline on Right Heart Function in Young Pigs after Ligation of the Right Coronary Artery. Basic and Clinical Pharmacology and Toxicology, 2008, 86, 192-196.	0.0	0
58	Cardiac BNP gene activation by angiotensin II in vivo. Molecular and Cellular Endocrinology, 2007, 273, 59-67.	3.2	31
59	Early left ventricular gene expression profile in response to increase in blood pressure. Blood Pressure, 2006, 15, 375-383.	1.5	12
60	Identification of Cell Cycle Regulatory and Inflammatory Genes As Predominant Targets of p38 Mitogen-Activated Protein Kinase in the Heart. Circulation Research, 2006, 99, 485-493.	4.5	59
61	p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and antiâ€apoptotic mechanisms. FASEB Journal, 2006, 20, 1907-1909.	0.5	58
62	Distinct Upregulation of Extracellular Matrix Genes in Transition From Hypertrophy to Hypertensive Heart Failure. Hypertension, 2005, 45, 927-933.	2.7	106
63	Mitogen-activated Protein Kinases p38 and ERK 1/2 Mediate the Wall Stress-induced Activation of GATA-4 Binding in Adult Heart. Journal of Biological Chemistry, 2004, 279, 24852-24860.	3.4	90
64	GATA transcription factors in the developing and adult heart. Cardiovascular Research, 2004, 63, 196-207.	3.8	349
65	Cardiac Hormones as Diagnostic Tools in Heart Failure. Endocrine Reviews, 2003, 24, 341-356.	20.1	224
66	Circulating and cardiac levels of apelin, novel ligand of the orphan receptor APJ, in patients with heart failure. American Journal of Hypertension, 2003, 16, A15.	2.0	0
67	AT ₁ Receptor Blockade Improves Vasorelaxation in Experimental Renal Failure. Hypertension, 2003, 41, 1364-1371.	2.7	32
68	GATA-4 Is a Nuclear Mediator of Mechanical Stretch-activated Hypertrophic Program. Journal of Biological Chemistry, 2003, 278, 23807-23816.	3.4	106
69	Evidence for a Functional Role of Angiotensin II Type 2 Receptor in the Cardiac Hypertrophic Process In Vivo in the Rat Heart. Circulation, 2003, 108, 2414-2422.	1.6	41
70	Endothelin-1-specific Activation of B-type Natriuretic Peptide Gene via p38 Mitogen-activated Protein Kinase and Nuclear ETS Factors. Journal of Biological Chemistry, 2003, 278, 3969-3975.	3.4	33
71	Identification of PKCα Isoform-Specific Effects in Cardiac Myocytes Using Antisense Phosphorothioate Oligonucleotides. Molecular Pharmacology, 2002, 62, 1482-1491.	2.3	22
72	Posttranscriptional Control of BNP Gene Expression in Angiotensin II–Induced Hypertension. Hypertension, 2002, 39, 803-808.	2.7	39

#	Article	IF	CITATIONS
73	Distinct Roles of Mitogen-activated Protein Kinase Pathways in GATA-4 Transcription Factor-mediated Regulation of B-type Natriuretic Peptide Gene. Journal of Biological Chemistry, 2002, 277, 13752-13760.	3.4	72
74	NG-Nitro-l-Arginine Methyl Ester–Induced Hypertension and Natriuretic Peptide Gene Expression: Inhibition by Angiotensin II Type 1 Receptor Antagonism. Journal of Cardiovascular Pharmacology, 2002, 40, 478-486.	1.9	17
75	Direct left ventricular wall stretch activates GATAff4 binding in perfused rat heart: involvement of autocrine/paracrine pathways. Pflugers Archiv European Journal of Physiology, 2002, 443, 362-369.	2.8	43
76	Differential gene expressions of natriuretic peptides in left ventricular hypertrophy models in conscious rats. American Journal of Hypertension, 2001, 14, A161-A162.	2.0	0
77	Left ventricular expression of ANP, BNP and adrenomedullin are differentially regulated during beta receptor stimulation in rats in vivo. American Journal of Hypertension, 2001, 14, A206.	2.0	Ο
78	Mechanical load-induced alterations in B-type natriuretic peptide gene expression. Canadian Journal of Physiology and Pharmacology, 2001, 79, 646-653.	1.4	68
79	The Haemodynamic Effects of Losartan after Right Ventricle Infarct in Young Pigs. Basic and Clinical Pharmacology and Toxicology, 2001, 88, 325-330.	0.0	1
80	EFFECT OF VASOACTIVE PEPTIDES ON TETRAHYMENA. CHEMOTACTIC PROPERTIES OF ENDOTHELINS (ET-1,) T MECHANISM OF CHEMOTAXIS. Cell Biology International, 2001, 25, 1173-1177.	j ETQq0 0 (3.0	0 rgBT /Overlo 9
81	Pressure Overload Increases GATA4 Binding Activity via Endothelin-1. Circulation, 2001, 103, 730-735.	1.6	79
82	Natriuretic Peptides Stimulate Steroidogenesis in the Fetal Rat Testis1. Biology of Reproduction, 2001, 65, 595-600.	2.7	48
83	GATA4 Mediates Activation of the B-Type Natriuretic Peptide Gene Expression in Response to Hemodynamic Stress. Endocrinology, 2001, 142, 4693-4700.	2.8	40
84	Factors Derived from Adrenals Are Required for Activation of Cardiac Gene Expression in Angiotensin II-Induced Hypertension. Endocrinology, 2001, 142, 4256-4263.	2.8	19
85	GATA4 Mediates Activation of the B-Type Natriuretic Peptide Gene Expression in Response to Hemodynamic Stress. Endocrinology, 2001, 142, 4693-4700.	2.8	18
86	cAMP- and cGMP-independent stretch-induced changes in the contraction of rat atrium. Pflugers Archiv European Journal of Physiology, 2000, 441, 65-68.	2.8	5
87	Impact of NO on ET-1- and AM-induced inotropic responses: potentiation by combined administration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R569-R575.	1.8	16
88	Gene Structure of a New Cardiac Peptide Hormone: A Model for Heart-Specific Gene Expression1. Endocrinology, 2000, 141, 731-740.	2.8	66
89	Gene Structure of a New Cardiac Peptide Hormone: A Model for Heart-Specific Gene Expression. Endocrinology, 2000, 141, 731-740.	2.8	20
90	Hypoxic pressor response, cardiac size, and natriuretic peptides are modified by long-term intermittent hypoxia. Journal of Applied Physiology, 1999, 87, 2025-2031.	2.5	38

#	Article	IF	CITATIONS
91	Inhibition of Atrial Wall Stretch-Induced Cardiac Hormone Secretion by Lavendustin A, a Potent Tyrosine Kinase Inhibitor ¹ . Endocrinology, 1999, 140, 4198-4207.	2.8	6
92	Vasoactive Peptide Release in Relation to Hemodynamic and Metabolic Changes During Rapid Ventricular Pacing. PACE - Pacing and Clinical Electrophysiology, 1999, 22, 1064-1070.	1.2	10
93	Differential regulation of cardiac adrenomedullin and natriuretic peptide gene expression by AT1 receptor antagonism and ACE inhibition in normotensive and hypertensive rats. Journal of Hypertension, 1999, 17, 1543-1552.	0.5	15
94	Inhibition of Atrial Wall Stretch-Induced Cardiac Hormone Secretion by Lavendustin A, a Potent Tyrosine Kinase Inhibitor. Endocrinology, 1999, 140, 4198-4207.	2.8	2
95	Adrenomedullin Gene Expression in the Rat Heart is Stimulated by Acute Pressure Overload: Blunted Effect in Experimental Hypertension. Endocrinology, 1997, 138, 2636-2639.	2.8	84
96	Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II. Journal of Molecular Medicine, 1997, 75, 876-885.	3.9	67
97	Endothelin-1 Is Involved in Stretch-Induced Early Activation of B-Type Natriuretic Peptide Gene Expression in Atrial but Not in Ventricular Myocytes. Circulation, 1997, 96, 3053-3062.	1.6	57
98	Immunohistochemical Localization of Somatostatin Receptor SST2A in the Rat Pancreas. Endocrinology, 1997, 138, 2636-2639.	2.8	23
99	Hemodynamic Recovery, Atrial Natriuretic Peptide, and Catecholamines During Simulated Ventricular Tachycardia: Effects of Ventriculoatrial Conduction. PACE - Pacing and Clinical Electrophysiology, 1995, 18, 75-82.	1.2	7
100	Plasma ANP and Cyclic GMP Levels Versus Left Ventricular Performance at Different AV Delays in AV Sequential Pacing. PACE - Pacing and Clinical Electrophysiology, 1994, 17, 627-636.	1.2	6
101	Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoidâ€salt hypertensive rats. British Journal of Pharmacology, 1993, 108, 948-958.	5.4	21
102	Quinapril treatment and arterial smooth muscle responses in spontaneously hypertensive rats. British Journal of Pharmacology, 1993, 108, 980-990.	5.4	35
103	Endothelin Peptides: Biological Activities, Cellular Signalling and Clinical Significance. Annals of Medicine, 1992, 24, 153-161.	3.8	39
104	Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium. British Journal of Pharmacology, 1991, 102, 453-461.	5.4	12
105	Depressant Effects of Lâ€Tyrosine on Isolated Perfused Rat and Rabbit Hearts. Basic and Clinical Pharmacology and Toxicology, 1990, 66, 209-212.	0.0	3
106	Release of atrial natriuretic peptide from rat myocardium <i>in vitro</i> : effect of minoxidilâ€induced hypertrophy. British Journal of Pharmacology, 1990, 99, 701-708.	5.4	12
107	Inhibition of Hepatic Microsomal Drug Metabolism in Rats by Five Calcium Antagonists. Basic and Clinical Pharmacology and Toxicology, 1989, 64, 446-450.	0.0	13
108	Hormonal, Haemodynamic, and Subjective Effects of Intravenously Infused Indomethacin: No Change in the Physiological Response to Hypertonic Saline Challenge. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 231-235.	0.0	3

#	Article	IF	CITATIONS
109	Effects of dexmedetomidine, a selective α2-adrenoceptor agonist, on hemodynamic control mechanisms. Clinical Pharmacology and Therapeutics, 1989, 46, 33-42.	4.7	203
110	The effect of medetomidine, an α ₂ â€adrenoceptor agonist, on plasma atrial natriuretic peptide levels, haemodynamics and renal excretory function in spontaneously hypertensive and Wistarâ€Kyoto rats. British Journal of Pharmacology, 1989, 97, 125-132.	5.4	17
111	Effect of atenolol and pindolol on the phorbol esterâ€induced coronary vasoconstriction in the isolated perfused heart of the rat. British Journal of Pharmacology, 1988, 94, 573-583.	5.4	9
112	Prevention of Cardiac Hypertrophy by Longâ€ŧerm Treatment with Isosorbide Dinitrate and Prazosin but not by Minoxidil in Spontaneously Hypertensive Rats. Acta Pharmacologica Et Toxicologica, 1984, 54, 154-157.	0.0	10