Ali Maghari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1902565/publications.pdf

Version: 2024-02-01

759233 752698 32 430 12 20 citations h-index g-index papers 32 32 32 524 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2. International Journal of Hydrogen Energy, 2013, 38, 16098-16120.	7.1	70
2	Binding of Noble Metal Clusters with Rare Gas Atoms: Theoretical Investigation. Journal of Physical Chemistry A, 2012, 116, 12510-12517.	2.5	36
3	Thermophysical properties of alkyl-imidazolium based ionic liquids through the heterosegmented SAFT-BACK equation of state. Journal of Molecular Liquids, 2014, 191, 59-67.	4.9	35
4	Prediction of thermodynamic properties of pure ionic liquids through extended SAFT-BACK equation of state. Fluid Phase Equilibria, 2013, 356, 109-116.	2.5	28
5	Ab initio potential energy curves and transition dipole moments for the low-lying states of CH+. Computational and Theoretical Chemistry, 2014, 1047, 22-29.	2.5	25
6	Direct Determination of the Interaction Potentials for SF6-Ar, SF6-Kr and SF6-Xe from the Extended Law of Corresponding States. Journal of the Physical Society of Japan, 1998, 67, 3086-3089.	1.6	20
7	Second-order thermodynamic derivative properties of binary mixtures of n-alkanes through the SAFT-CP equation of state. Fluid Phase Equilibria, 2011, 302, 195-201.	2.5	19
8	Direct Determination of the Intermolecular Potential for H2â€"H2from a Viscosity Correlation Equation. Journal of the Physical Society of Japan, 1999, 68, 2276-2280.	1.6	17
9	CF ₄ decomposition in a low-pressure ICP: influence of applied power and O ₂ content. Journal Physics D: Applied Physics, 2014, 47, 355205.	2.8	17
10	Unfolding of insulin at the surface of ZnO quantum dots. International Journal of Biological Macromolecules, 2016, 86, 169-176.	7.5	17
11	Prediction of Joule-Thomson Inversion Curves from van der Waals Type Equations of State Journal of Chemical Engineering of Japan, 1997, 30, 520-525.	0.6	14
12	On the Sensitivity of Thermal Diffusion to the Intermolecular Pair Potential. Journal of the Physical Society of Japan, 2000, 69, 1389-1393.	1.6	12
13	Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3623-3635.	3.5	12
14	Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents. Materials Science and Engineering C, 2017, 77, 836-845.	7.3	11
15	Calculation of Transport Coefficients for CH4–N2and CH4–O2by the Inversion Method. Journal of the Physical Society of Japan, 2004, 73, 1191-1196.	1.6	10
16	Relaxation of a steep density gradient in a simple fluid: Comparison between atomistic and continuum modeling. Journal of Chemical Physics, 2014, 141, 154107.	3.0	10
17	Non-equilibrium molecular dynamics simulation of thermal conductivity and thermal diffusion of binary mixtures confined in a nanochannel. Chemical Physics, 2014, 444, 30-38.	1.9	9
18	SAFT-VR modelling of the surface and bulk properties of imidazolium and pyridinium based ionic liquids with ten different anions. Journal of Molecular Liquids, 2016, 224, 872-881.	4.9	9

#	Article	IF	CITATIONS
19	On the Calculation of Surface Tensions of n-Alkanes Using the Modified SAFT-BACK-DFT Approach. Journal of Solution Chemistry, 2010, 39, 31-41.	1.2	8
20	Hydrogen and deuterium separation on metal organic frameworks based on Cu- and Zn-BTC: an experimental and theoretical study. Adsorption, 2021, 27, 925-935.	3.0	8
21	Nonequilibrium Molecular Dynamics Study of Thermal Diffusion Behavior of the MMSV Potential Model for Hydrogen. Journal of the Physical Society of Japan, 2001, 70, 3261-3267.	1.6	6
22	⁴ He/ ³ He separation using oxygen-functionalized nanoporous graphene. Physical Chemistry Chemical Physics, 2019, 21, 12414-12422.	2.8	6
23	Ab initio potential energy curves and transition dipole moments for the low-lying electronic states of NeH+. Computational and Theoretical Chemistry, 2015, 1070, 82-87.	2.5	5
24	Transport properties of methane, ethane, propane, iso-butane and neo-pentane from ab initio potential energy surfaces. Journal of the Iranian Chemical Society, 2016, 13, 1225-1233.	2.2	5
25	Interfacial structure of water/methanol mixture in contact with graphene surface using molecular dynamics simulation. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P06033.	2.3	4
26	Quantum close coupling calculation of transport and relaxation properties for Hg-H 2 system. Chemical Physics, 2016, 479, 99-108.	1.9	4
27	Atom–surface scattering: a comparative study considering real and complex absorbing potentials. Adsorption, 2017, 23, 663-669.	3.0	4
28	Theoretical investigation of scattering of an atomic projectile confined in a harmonic surface potential. Journal of the Iranian Chemical Society, 2017, 14, 1497-1505.	2.2	3
29	Reactive molecular dynamics simulation for isotope-exchange reactions in H/D systems: ReaxFFHD development. Journal of Chemical Physics, 2020, 152, 224111.	3.0	2
30	Reaction mechanisms of C(3PJ) and C+(2PJ) with benzene in the interstellar medium from quantum mechanical molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 4205-4216.	2.8	2
31	Micro-solvation of a bisphosphonate group: an ab initio and effective fragment potential analysis. Structural Chemistry, 2017, 28, 1201-1210.	2.0	1
32	Quantum scattering approach for investigation of two interacting atoms trapped in a one-dimensional Morse potential via Lippmann-Schwinger equation. Journal of Mathematical Physics, 2017, 58, 062105.	1.1	1