Matthew Stephens

List of Publications by Citations

Source: https://exaly.com/author-pdf/190215/matthew-stephens-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52,336 51 110 101 h-index g-index citations papers 61,208 110 14.1 7.93 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
101	Inference of population structure using multilocus genotype data. <i>Genetics</i> , 2000 , 155, 945-59	4	22315
100	Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. <i>Genetics</i> , 2003 , 164, 1567-87	4	5901
99	A second generation human haplotype map of over 3.1 million SNPs. <i>Nature</i> , 2007 , 449, 851-61	50.4	3647
98	Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. <i>Science</i> , 2015 , 348, 648-60	33.3	3242
97	RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. <i>Genome Research</i> , 2008 , 18, 1509-17	9.7	2051
96	A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. <i>American Journal of Human Genetics</i> , 2006 , 78, 629-4	14 ¹¹	1493
95	Genome-wide efficient mixed-model analysis for association studies. <i>Nature Genetics</i> , 2012 , 44, 821-4	36.3	1480
94	Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. <i>Nature Genetics</i> , 2012 , 44, 955-9	36.3	1292
93	Understanding mechanisms underlying human gene expression variation with RNA sequencing. <i>Nature</i> , 2010 , 464, 768-72	50.4	993
92	fastSTRUCTURE: variational inference of population structure in large SNP data sets. <i>Genetics</i> , 2014 , 197, 573-89	4	839
91	Genotype imputation with thousands of genomes. <i>G3: Genes, Genomes, Genetics</i> , 2011 , 1, 457-70	3.2	719
90	Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. <i>Genetics</i> , 2003 , 165, 2213-33	4	652
89	Dealing with label switching in mixture models. <i>Journal of the Royal Statistical Society Series B:</i> Statistical Methodology, 2000 , 62, 795-809	3.9	561
88	DNase I sensitivity QTLs are a major determinant of human expression variation. <i>Nature</i> , 2012 , 482, 390)-40. 4	479
87	High-resolution mapping of expression-QTLs yields insight into human gene regulation. <i>PLoS Genetics</i> , 2008 , 4, e1000214	6	456
86	Polygenic modeling with bayesian sparse linear mixed models. <i>PLoS Genetics</i> , 2013 , 9, e1003264	6	440
85	Efficient multivariate linear mixed model algorithms for genome-wide association studies. <i>Nature Methods</i> , 2014 , 11, 407-9	21.6	432

(2019-2007)

84	Imputation-based analysis of association studies: candidate regions and quantitative traits. <i>PLoS Genetics</i> , 2007 , 3, e114	6	386
83	Interpreting principal component analyses of spatial population genetic variation. <i>Nature Genetics</i> , 2008 , 40, 646-9	36.3	381
82	Bayesian statistical methods for genetic association studies. <i>Nature Reviews Genetics</i> , 2009 , 10, 681-90	30.1	339
81	Visualizing spatial population structure with estimated effective migration surfaces. <i>Nature Genetics</i> , 2016 , 48, 94-100	36.3	226
80	Bayesian variable selection regression for genome-wide association studies and other large-scale problems. <i>Annals of Applied Statistics</i> , 2011 , 5,	2.1	220
79	False discovery rates: a new deal. <i>Biostatistics</i> , 2017 , 18, 275-294	3.7	201
78	Genome-wide association of lipid-lowering response to statins in combined study populations. <i>PLoS ONE</i> , 2010 , 5, e9763	3.7	185
77	A statistical framework for joint eQTL analysis in multiple tissues. <i>PLoS Genetics</i> , 2013 , 9, e1003486	6	175
76	A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. <i>Nature</i> , 2013 , 502, 377-80	50.4	160
75	Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein. <i>American Journal of Human Genetics</i> , 2008 , 82, 1193-201	11	155
74	Dissecting the regulatory architecture of gene expression QTLs. Genome Biology, 2012, 13, R7	18.3	151
73	A unified framework for association analysis with multiple related phenotypes. <i>PLoS ONE</i> , 2013 , 8, e652	2457	146
72	Practical issues in imputation-based association mapping. <i>PLoS Genetics</i> , 2008 , 4, e1000279	6	144
71	Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies. <i>Bayesian Analysis</i> , 2012 , 7,	2.3	126
70	A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. <i>PLoS ONE</i> , 2015 , 10, e0120758	3.7	118
69	The impact of sex on gene expression across human tissues. <i>Science</i> , 2020 , 369,	33.3	100
68	Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. <i>PLoS Genetics</i> , 2010 , 6, e1001117	6	95
67	Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. <i>Nature Genetics</i> , 2019 , 51, 187-195	36.3	94

66	A simple new approach to variable selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2020 , 82, 1273-1300	3.9	91
65	A Simple Model-Based Approach to Inferring and Visualizing Cancer Mutation Signatures. <i>PLoS Genetics</i> , 2015 , 11, e1005657	6	87
64	Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. <i>ELife</i> , 2016 , 5,	8.9	82
63	The GTEx Consortium atlas of genetic regulatory effects across human tissues		81
62	Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. <i>PLoS Genetics</i> , 2011 , 7, e1002162	6	80
61	The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. <i>PLoS Genetics</i> , 2012 , 8, e1003000	6	80
60	BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH SUMMARY STATISTICS FROM GENOME-WIDE ASSOCIATION STUDIES. <i>Annals of Applied Statistics</i> , 2017 , 11, 1561-1592	2.1	73
59	The genetic architecture of gene expression levels in wild baboons. <i>ELife</i> , 2015 , 4,	8.9	73
58	Cell type-specific genetic regulation of gene expression across human tissues. Science, 2020, 369,	33.3	68
57	Visualizing the structure of RNA-seq expression data using grade of membership models. <i>PLoS Genetics</i> , 2017 , 13, e1006599	6	66
56	Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). <i>PLoS ONE</i> , 2012 , 7, e42646	3.7	65
55	Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. <i>Nature Genetics</i> , 2020 , 52, 740-747	36.3	64
54	Genotyping Polyploids from Messy Sequencing Data. <i>Genetics</i> , 2018 , 210, 789-807	4	64
53	Genetic analyses support the contribution of mRNA N-methyladenosine (mA) modification to human disease heritability. <i>Nature Genetics</i> , 2020 , 52, 939-949	36.3	52
52	USING LINEAR PREDICTORS TO IMPUTE ALLELE FREQUENCIES FROM SUMMARY OR POOLED GENOTYPE DATA. <i>Annals of Applied Statistics</i> , 2010 , 4, 1158-1182	2.1	52
51	Promoter shape varies across populations and affects promoter evolution and expression noise. <i>Nature Genetics</i> , 2017 , 49, 550-558	36.3	51
50	Epigenetic modifications are associated with inter-species gene expression variation in primates. <i>Genome Biology</i> , 2014 , 15, 547	18.3	49
49	Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. <i>Nature Communications</i> , 2018 , 9, 4361	17.4	48

(2013-2013)

48	Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn's disease. <i>PLoS Genetics</i> , 2013 , 9, e1003770	6	47
47	An estimate of the average number of recessive lethal mutations carried by humans. <i>Genetics</i> , 2015 , 199, 1243-54	4	45
46	BAYESIAN METHODS FOR GENETIC ASSOCIATION ANALYSIS WITH HETEROGENEOUS SUBGROUPS: FROM META-ANALYSES TO GENE-ENVIRONMENT INTERACTIONS. <i>Annals of Applied Statistics</i> , 2014 , 8, 176-203	2.1	39
45	Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. <i>Genome Biology</i> , 2021 , 22, 49	18.3	38
44	Discovery and characterization of variance QTLs in human induced pluripotent stem cells. <i>PLoS Genetics</i> , 2019 , 15, e1008045	6	31
43	Estimating Time to the Common Ancestor for a Beneficial Allele. <i>Molecular Biology and Evolution</i> , 2018 , 35, 1003-1017	8.3	31
42	New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. <i>Molecular Ecology</i> , 2015 , 24, 6134-47	5.7	30
41	A simple new approach to variable selection in regression, with application to genetic fine-mapping		30
40	Estimating recent migration and population-size surfaces. <i>PLoS Genetics</i> , 2019 , 15, e1007908	6	29
39	msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding. <i>PLoS ONE</i> , 2015 , 10, e0138030	3.7	28
38	Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. <i>Nature Genetics</i> , 2021 , 53, 770-777	36.3	27
37	Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis. <i>Genome Research</i> , 2020 , 30, 611-621	9.7	26
36	Detailed modeling of positive selection improves detection of cancer driver genes. <i>Nature Communications</i> , 2019 , 10, 3399	17.4	24
35	Creating and sharing reproducible research code the workflowr way. F1000Research, 2019, 8, 1749	3.6	23
34	A new sequence logo plot to highlight enrichment and depletion. <i>BMC Bioinformatics</i> , 2018 , 19, 473	3.6	23
33	Exploiting the GTEx resources to decipher the mechanisms at GWAS loci		21
32	Regional influences on community structure across the tropical-temperate divide. <i>Nature Communications</i> , 2019 , 10, 2646	17.4	20
31	Genetic, functional and molecular features of glucocorticoid receptor binding. <i>PLoS ONE</i> , 2013 , 8, e616	5 <u>4</u> .7	20

30	Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. <i>Cell</i> , 2021 , 184, 2633-2648.e19	56.2	20
29	WAVELET-BASED GENETIC ASSOCIATION ANALYSIS OF FUNCTIONAL PHENOTYPES ARISING FROM HIGH-THROUGHPUT SEQUENCING ASSAYS. <i>Annals of Applied Statistics</i> , 2015 , 9, 655-686	2.1	18
28	A vast resource of allelic expression data spanning human tissues. <i>Genome Biology</i> , 2020 , 21, 234	18.3	18
27	Exon-specific QTLs skew the inferred distribution of expression QTLs detected using gene expression array data. <i>PLoS ONE</i> , 2012 , 7, e30629	3.7	17
26	Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. <i>Heredity</i> , 2019 , 122, 261-275	3.6	15
25	Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. <i>ELife</i> , 2018 , 7,	8.9	15
24	Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analy	/sis	11
23	False Discovery Rates: A New Deal		10
22	Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes. <i>ELife</i> , 2021 , 10,	8.9	8
21	Empirical Bayes shrinkage and false discovery rate estimation, allowing for unwanted variation. <i>Biostatistics</i> , 2020 , 21, 15-32	3.7	5
20	Bayesian multivariate reanalysis of large genetic studies identifies many new associations. <i>PLoS Genetics</i> , 2019 , 15, e1008431	6	5
19	A large-scale genome-wide enrichment analysis identifies new trait-associated genes, pathways and tissues across 31 human phenotypes*		5
18	Mangravite et al. reply. <i>Nature</i> , 2014 , 513, E3	50.4	4
17	Flexible statistical methods for estimating and testing effects in genomic studies with multiple condition	ons	4
16	Bayesian large-scale multiple regression with summary statistics from genome-wide association studies	5	4
15	A Fast Algorithm for Maximum Likelihood Estimation of Mixture Proportions Using Sequential Quadratic Programming. <i>Journal of Computational and Graphical Statistics</i> , 2020 , 29, 261-273	1.4	4
14	Inference and visualization of DNA damage patterns using a grade of membership model. Bioinformatics, 2019 , 35, 1292-1298	7.2	4
13	Variance adaptive shrinkage (vash): flexible empirical Bayes estimation of variances. <i>Bioinformatics</i> , 2016 , 32, 3428-3434	7.2	3

LIST OF PUBLICATIONS

12	Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis	3
11	Dispersal syndromes drive the formation of biogeographical regions, illustrated by the case of Wallace's Line. <i>Global Ecology and Biogeography</i> , 2021 , 30, 685-696	3
10	Visualizing the Structure of RNA-seq Expression Data using Grade of Membership Models	2
9	Fine-mapping from summary data with the Bum of Single EffectsImodel	1
8	Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes	1
7	Genotyping Polyploids from Messy Sequencing Data	1
6	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	
5	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	
4	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	
3	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	
2	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	
1	Bayesian multivariate reanalysis of large genetic studies identifies many new associations 2019 , 15, e1008431	