
Madeline Vara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1901542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Nanomaterials at Work in Biomedicine. Chemical Reviews, 2015, 115, 10410-10488.	47.7	986
2	Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science, 2015, 349, 412-416.	12.6	854
3	Pd@Pt Core–Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability. Journal of the American Chemical Society, 2015, 137, 15036-15042.	13.7	296
4	Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 2016, 16, 6644-6649.	9.1	150
5	Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 ŰC, and Enhanced Catalytic Activity. Journal of the American Chemical Society, 2019, 141, 7028-7036.	13.7	122
6	Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd–Pt Bimetallic Nanocrystals with Different Structures. Journal of the American Chemical Society, 2016, 138, 12263-12270.	13.7	111
7	Synthesis and Characterization of Ru Cubic Nanocages with a Face-Centered Cubic Structure by Templating with Pd Nanocubes. Nano Letters, 2016, 16, 5310-5317.	9.1	110
8	Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catalysis, 2018, 8, 6948-6960.	11.2	66
9	Facile Synthesis of Ru-Based Octahedral Nanocages with Ultrathin Walls in a Face-Centered Cubic Structure. Chemistry of Materials, 2017, 29, 9227-9237.	6.7	55
10	Understanding the Thermal Stability of Palladium–Platinum Core–Shell Nanocrystals by <i>In Situ</i> Transmission Electron Microscopy and Density Functional Theory. ACS Nano, 2017, 11, 4571-4581.	14.6	53
11	Platinum Cubic Nanoframes with Enhanced Catalytic Activity and Durability Toward Oxygen Reduction. ChemSusChem, 2016, 9, 2855-2861.	6.8	49
12	Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance. ACS Nano, 2019, 13, 7241-7251.	14.6	47
13	Oxidative Etching of Pd Decahedral Nanocrystals with a Penta-twinned Structure and Its Impact on Their Growth Behavior. Chemistry of Materials, 2017, 29, 5394-5400.	6.7	22
14	Waterâ€Based Synthesis of Subâ€10 nm Pt Octahedra and Their Performance towards the Oxygen Reduction Reaction. ChemNanoMat, 2017, 3, 879-884.	2.8	22
15	On the Thermodynamics and Experimental Control of Twinning in Metal Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 8647-8651.	13.8	21
16	Toward a Quantitative Understanding of the Sulfate-Mediated Synthesis of Pd Decahedral Nanocrystals with High Conversion and Morphology Yields. Chemistry of Materials, 2016, 28, 8800-8806.	6.7	20
17	Understanding the Stability of Ptâ€Based Nanocages under Thermal Stress Using <i>In Situ</i> Electron Microscopy. ChemNanoMat, 2018, 4, 112-117.	2.8	19
18	Facile Synthesis of Pd@Pt _{3–4L} Core–Shell Octahedra with a Clean Surface and Thus Enhanced Activity toward Oxygen Reduction. ChemCatChem, 2017, 9, 414-419.	3.7	18

MADELINE VARA

#	Article	IF	CITATIONS
19	Synthesis of Palladium Nanoscale Octahedra through a Oneâ€Pot, Dualâ€Reductant Route and Kinetic Analysis. Chemistry - A European Journal, 2018, 24, 6133-6139.	3.3	18
20	Rhodium Decahedral Nanocrystals: Facile Synthesis, Mechanistic Insights, and Experimental Controls. ChemNanoMat, 2018, 4, 66-70.	2.8	15
21	A Photochemical, Room-Temperature, and Aqueous Route to the Synthesis of Pd Nanocubes Enriched with Atomic Steps and Terraces on the Side Faces. Chemistry of Materials, 2017, 29, 4563-4571.	6.7	14
22	Facile synthesis of Pd concave nanocubes: From kinetics to mechanistic understanding and rationally designed protocol. Nano Research, 2018, 11, 3122-3131.	10.4	12
23	Oneâ€Pot Synthesis of Pd@Pt _{<i>n</i>L} Coreâ€Shell Icosahedral Nanocrystals in High Throughput through a Quantitative Analysis of the Reduction Kinetics. Chemistry - A European Journal, 2019, 25, 5322-5329.	3.3	12
24	On the Thermodynamics and Experimental Control of Twinning in Metal Nanocrystals. Angewandte Chemie, 2017, 129, 8773-8777.	2.0	6
25	Hydroquinone-Based Synthesis of Pd Nanostructures and the Interplay of Surface Capping, Reduction Kinetics, Attachment, Diffusion, and Fusion. Chemistry of Materials, 2021, 33, 8430-8439.	6.7	6
26	Facile Synthesis of BaTiO ₃ Nanocubes with the Use of Anatase TiO ₂ Nanorods as a Precursor to Titanium Hydroxide. ChemNanoMat, 2016, 2, 873-878.	2.8	3
27	Detecting Localized Variation of Chemistry via Atomic-Resolution Secondary Electron Imaging. Microscopy and Microanalysis, 2015, 21, 1265-1266.	0.4	0
28	Facile Synthesis of Pd@Pt3- 4L Core-Shell Octahedra with a Clean Surface and Thus Enhanced Activity toward Oxygen Reduction. ChemCatChem, 2017, 9, 376-376.	3.7	0