
Eswar Shankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1901525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chamomile: A herbal medicine of the past with a bright future (Review). Molecular Medicine Reports, 2010, 3, 895-901.	2.4	343
2	Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Seminars in Cancer Biology, 2016, 40-41, 82-99.	9.6	117
3	Plant Flavone Apigenin: an Emerging Anticancer Agent. Current Pharmacology Reports, 2017, 3, 423-446.	3.0	117
4	Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice. PLoS ONE, 2015, 10, e0138710.	2.5	86
5	Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget, 2015, 6, 31216-31232.	1.8	78
6	Highâ€fat diet increases NFâ€ĤB signaling in the prostate of reporter mice. Prostate, 2011, 71, 147-156.	2.3	73
7	Androgen receptorâ€related diseases: what do we know?. Andrology, 2016, 4, 366-381.	3.5	70
8	Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-κB) Pathways. Molecules, 2017, 22, 264.	3.8	66
9	Dopaminergic regulation of glucoseâ€induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro. IUBMB Life, 2006, 58, 157-163.	3.4	54
10	Downregulation of Bid is associated with PKCÉ>-mediated TRAIL resistance. Cell Death and Differentiation, 2007, 14, 851-860.	11.2	54
11	Highâ€fat diet activates proâ€inflammatory response in the prostate through association of Statâ€3 and NFâ€₽̂B. Prostate, 2012, 72, 233-243.	2.3	54
12	Green tea–induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinaseâ€3 suppresses prostate cancer progression through histoneâ€modifying enzymes. Molecular Carcinogenesis, 2019, 58, 1194-1207.	2.7	45
13	Simultaneous Detection of Oral Pathogens in Subgingival Plaque and Prostatic Fluid of Men With Periodontal and Prostatic Diseases. Journal of Periodontology, 2017, 88, 823-829.	3.4	44
14	Protein kinase CÉ> confers resistance of MCF-7 cells to TRAIL by Akt-dependent activation of Hdm2 and downregulation of p53. Oncogene, 2008, 27, 3957-3966.	5.9	42
15	Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics, 2020, 10, 126.	2.6	38
16	Protein kinase C-Îμ protects MCF-7 cells from TNF-mediated cell death by inhibiting Bax translocation. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1893-1900.	4.9	35
17	MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Research, 2019, 79, 1844-1856.	0.9	35
18	Statin Use in Prostate Cancer: An Update. Nutrition and Metabolic Insights, 2016, 9, NMI.S38362.	1.9	28

ESWAR SHANKAR

#	Article	IF	CITATIONS
19	Critical Role of a Survivin/TGF-β/mTORC1 Axis in IGF-I-Mediated Growth of Prostate Epithelial Cells. PLoS ONE, 2013, 8, e61896.	2.5	28
20	Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer. Cells, 2019, 8, 201.	4.1	27
21	Obesityâ€initiated metabolic syndrome promotes urinary voiding dysfunction in a mouse model. Prostate, 2016, 76, 964-976.	2.3	26
22	Androgen Deprivation Induces Transcriptional Reprogramming in Prostate Cancer Cells to Develop Stem Cell-Like Characteristics. International Journal of Molecular Sciences, 2020, 21, 9568.	4.1	26
23	Final results of a dose escalation protocol of stereotactic body radiotherapy for poor surgical candidates with localized renal cell carcinoma. Radiotherapy and Oncology, 2021, 155, 138-143.	0.6	23
24	Metabolic Reprogramming and Predominance of Solute Carrier Genes during Acquired Enzalutamide Resistance in Prostate Cancer. Cells, 2020, 9, 2535.	4.1	22
25	Cited2, a Transcriptional Modulator Protein, Regulates Metabolism in Murine Embryonic Stem Cells. Journal of Biological Chemistry, 2014, 289, 251-263.	3.4	21
26	A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells. Journal of Biological Chemistry, 2016, 291, 5512-5526.	3.4	20
27	Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer. Toxicology and Applied Pharmacology, 2020, 404, 115200.	2.8	20
28	Inflammatory Signaling Involved in High-Fat Diet Induced Prostate Diseases. , 2015, 2, .		16
29	Role of class I histone deacetylases in the regulation of maspin expression in prostate cancer. Molecular Carcinogenesis, 2020, 59, 955-966.	2.7	15
30	Genipin guides and sustains the polarization of macrophages to the pro-regenerative M2 subtype via activation of the pSTAT6-PPAR-gamma pathway. Acta Biomaterialia, 2021, 131, 198-210.	8.3	14
31	PKCε induces Bcl-2 by activating CREB. International Journal of Oncology, 2010, 36, 883-8.	3.3	10
32	Early Cellular Responses of Prostate Carcinoma Cells to Sepantronium Bromide (YM155) Involve Suppression of mTORC1 by AMPK. Scientific Reports, 2019, 9, 11541.	3.3	9
33	Novel approach to therapeutic targeting of castration-resistant prostate cancer. Medical Hypotheses, 2020, 140, 109639.	1.5	9
34	Role of solute carrier transporters SLC25A17 and SLC27A6 in acquired resistance to enzalutamide in castrationâ€resistant prostate cancer. Molecular Carcinogenesis, 2022, 61, 397-407.	2.7	8
35	Identification of Key Genes Associated with Progression and Prognosis of Bladder Cancer through Integrated Bioinformatics Analysis. Cancers, 2021, 13, 5931.	3.7	5
36	NSC109268 potentiates cisplatin-induced cell death in a p53-independent manner. Journal of Molecular Signaling, 2010, 5, 4.	0.5	4

ESWAR SHANKAR

#	Article	IF	CITATIONS
37	Dietary and Lifestyle Factors in Epigenetic Regulation of Cancer. , 2019, , 361-394.		3
38	Maspin Expression and its Metastasis Suppressing Function in Prostate Cancer. , 2016, , .		2
39	Chapter 5 Green Tea Polyphenols in the Prevention and Therapy of Prostate Cancer. Traditional Herbal Medicines for Modern Times, 2016, , 111-124.	0.1	2
40	MP62-09 CLASS I HDAC INHIBITION AND P53 ACTIVATION UPREGULATES MASPIN IN HUMAN PROSTATE CANCER. Journal of Urology, 2016, 195, .	0.4	1
41	Abstract 2164: High fat diet-induced intraprostatic inflammation involves association between Stat-3 and NF-kappaB: Role in pathogenesis of prostate cancer. , 2011, , .		1
42	PD27-05 POLARIZATION OF MACROPHAGES FROM M0 TO M2 WHEN SEEDED UPON GENIPIN-CROSSLINKED COLLAGEN MESH FOR TREATMENT OF STRESS URINARY INCONTINENCE. Journal of Urology, 2020, 203, .	0.4	1
43	Hypoxia represses early responses of prostate and renal cancer cells to YM155 independent of HIF-1α and HIF-2α. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100076.	3.6	1
44	678 HIGH FAT DIET INDUCES INTRAPROSTATIC NUCLEAR FACTOR KAPPAB ACTIVITY AND UP-REGULATES LEVELS OF T REGULATORY CELLS. Journal of Urology, 2010, 183, .	0.4	0
45	1420 HIGH FAT DIET INDUCES INTRAPROSTATIC ASSOCIATION OF STAT-3 AND NF-&[KAPPA]B IN THE NUCLEUS-A CAUSE FOR PROSTRATE INFLAMMATION. Journal of Urology, 2011, 185, .	0.4	0
46	MP46-04 REAL TIME IN VIVO MOLECULAR IMAGING OF NF-κB IN PROSTATE CANCER: ROLE AS PROGNOSTIC BIOMARKER AND THERAPEUTIC TARGET. Journal of Urology, 2015, 193, .	0.4	0
47	PD20-05 POSSIBLE LINK BETWEEN PERIODONTAL DISEASE AND CHRONIC PROSTATITIS. Journal of Urology, 2016, 195, .	0.4	0
48	Nutritional and Lifestyle Impact on Epigenetics and Cancer. Energy Balance and Cancer, 2016, , 75-107.	0.2	0
49	PD33-02 PROSTATE CANCER AGGRESSIVENESS IS MEDIATED BY AKT AND NF-ήB SIGNALING PATHWAYS: A SYSTEMS BIOLOGY APPROACH. Journal of Urology, 2017, 197, .	0.4	0
50	Abstract 2594: Reactivation of maspin by plant flavone apigenin through inhibition of class I HDACs and increase in p53 transcriptional activity in prostate cancer cells. , 2021, , .		0
51	Abstract 655: Racial difference in CXC motif chemokine receptor 4 expression in prostate cancer. , 2021, , .		0
52	Abstract 1126: Solute carrier (SLC) transporter-mediated metabolic reprogramming during enzalutamide resistance in prostate cancer. , 2021, , .		0
53	Abstract 5175: Survivin Suppression by YM155 involves downregulation of Cyclin Ds and Activation of Rb , 2013, , .		0
54	Abstract 4079: Control of survivin expression by IGF-I in prostate epithelial cells , 2013, , .		0

4

ESWAR SHANKAR

#	Article	IF	CITATIONS
55	Abstract 1804: New insights in the induction of cell death by the imidazolium based compound YM155. , 2014, , .		0
56	Abstract 91: NF-Î $^\circ$ B as a prognostic marker and therapeutic target in prostate cancer. , 2015, , .		0
57	Abstract 1119: Tumor suppressing dual-action miRNA: Targeting Warburg effect and androgen receptor function in CRPC. , 2016, , .		0
58	Abstract 2609: Epigenetic reactivation of TIMP-3 in human prostate cancer cells by green tea polyphenols. , 2016, , .		0
59	Abstract LB-255: Prognostic role of neuroendocrine differentiation marker in prostate adenocarcinoma. , 2017, , .		0
60	Abstract 1470: Fine-tuning the expression of heterogeneous network of genes involved in androgen signaling, aerobic glycolysis, apoptosis and epithelial-mesenchymal transition by microRNA-644a in prostate cancer potentiation of AR signaling therapy by miR-644a: Selective manipulation of the prostate cancer transcriptome by miR-644a., 2017,,.		0
61	Abstract 2531: Regulation of androgen signaling axis and tumor suppressive function of miR-149-5p in prostate cancer. , 2017, , .		0
62	Abstract 1080: Targeting the PI3K-Akt and NF-κB pathways as a combination therapy in blocking prostate cancer progression. , 2017, , .		0
63	Abstract 2225: Green tea polyphenols suppress tumor growth and invasion by targeting matrix metalloproteinases, RECK and TIMP-3, in a mouse model implanted with prostate tumors. , 2017, , .		0
64	Abstract 2230: Luteolin selectively inhibits EZH2 and blocks H3K27 methylation in prostate cancer cells. , 2017, , .		0
65	Combination of nuclear NF-kB/p65 localization and gland morphological features from surgical specimens appears to be predictive of early biochemical recurrence in prostate cancer patients. , 2018, , .		0
66	MP35-09 COMBINATION OF NF-κB/P65 NUCLEAR LOCALIZATION AND GLAND MORPHOLOGIC FEATURES IS PREDICTIVE OF BIOCHEMICAL RECURRENCE. Journal of Urology, 2018, 199, .	0.4	0
67	Abstract 4815: Efficacy and toxicity of combinatorial therapy with EZH2 and androgen receptor inhibitor for castration-resistant prostate cancer. , 2018, , .		0
68	Abstract LB-021: Combination of quantitative histomorphometry with NFκB/p65 nuclear localization is better predictor of biochemical recurrence in prostate cancer patients. , 2018, , .		0
69	Oncogenic potential of BMI1: race-based evidence in prostate cancer. AME Medical Journal, 0, 3, 108-108.	0.4	0
70	MP34-01 DUAL TARGETING OF EZH2 AND ANDROGEN RECEPTOR SYNERGISTICALLY INHIBITS CASTRATION-RESISTANT PROSTATE CANCER. Journal of Urology, 2019, 201, .	0.4	0
71	Abstract 5084: Epigenetic modifications involving reactivation of RECK inhibiting MMP-9 and MMP-2 in prostate cancer. , 2019, , .		0
72	MP79-03 DRUG REPURPOSING APPROACH FOR DEVELOPING NOVEL THERAPY FOR CASTRATION RESISTANT PROSTATE CANCER. Journal of Urology, 2020, 203, .	0.4	0

#	Article	IF	CITATIONS
73	Abstract 4097: Enhanced synergistic efficacy of simvastatin and metformin on enzalutamide resistant prostate cancer cells. , 2020, , .		0
74	Abstract 1467: Metabolic reprogramming fuels prostate cancer cells towards enzalutamide resistance. , 2020, , .		0
75	MP51-20â€∱MOLECULAR REPROGRAMMING AND REWIRING OF PROSTATE CANCER CELLS AFTER ENZALUTAMI EXPOSURE. Journal of Urology, 2020, 203, .)E _{0.4}	Ο
76	Abstract 5084: Epigenetic modifications involving reactivation of RECK inhibiting MMP-9 and MMP-2 in prostate cancer. , 2019, , .		0