## Timothy D Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900664/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Species-Scale Genomic Analysis of Staphylococcus aureus Genes Influencing Phage Host Range and<br>Their Relationships to Virulence and Antibiotic Resistance Genes. MSystems, 2022, 7, e0108321.                                                                            | 3.8  | 4         |
| 2  | Species-Wide Phylogenomics of the Staphylococcus aureus <i>Agr</i> Operon Revealed Convergent Evolution of Frameshift Mutations. Microbiology Spectrum, 2022, 10, e0133421.                                                                                                 | 3.0  | 13        |
| 3  | Unrecognized introductions of SARS-CoV-2 into the US state of Georgia shaped the early epidemic.<br>Virus Evolution, 2022, 8, veac011.                                                                                                                                      | 4.9  | 2         |
| 4  | Association of secretor status and recent norovirus infection with gut microbiome diversity metrics in a Veterans Affairs population. Open Forum Infectious Diseases, 2022, 9, ofac125.                                                                                     | 0.9  | 0         |
| 5  | A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, e0025122.                                                                             | 3.2  | 4         |
| 6  | Unsuspected clonal spread of Methicillin-resistant <i>Staphylococcus aureus</i> causing<br>bloodstream infections in hospitalized adults detected using whole genome sequencing. Clinical<br>Infectious Diseases, 2022, , .                                                 | 5.8  | 5         |
| 7  | Metagenomic Shotgun Sequencing of Endocervical, Vaginal, and Rectal Samples among Fijian Women with and without Chlamydia trachomatis Reveals Disparate Microbial Populations and Function across Anatomic Sites: a Pilot Study. Microbiology Spectrum, 2022, 10, e0010522. | 3.0  | 8         |
| 8  | Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. MSphere, 2021,<br>6, .                                                                                                                                                                 | 2.9  | 19        |
| 9  | Structures of <i>Neisseria gonorrhoeae</i> MtrR-operator complexes reveal molecular mechanisms of DNA recognition and antibiotic resistance-conferring clinical mutations. Nucleic Acids Research, 2021, 49, 4155-4170.                                                     | 14.5 | 13        |
| 10 | Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical<br>Vaginal and Rectal Swabs. MSphere, 2021, 6, .                                                                                                                             | 2.9  | 9         |
| 11 | Vaginal Microbiome Composition in Early Pregnancy and Risk of Spontaneous Preterm and Early Term<br>Birth Among African American Women. Frontiers in Cellular and Infection Microbiology, 2021, 11,<br>641005.                                                              | 3.9  | 41        |
| 12 | Shiftwork, functional bowel symptoms, and the microbiome. PeerJ, 2021, 9, e11406.                                                                                                                                                                                           | 2.0  | 5         |
| 13 | Symbiont Genomic Features and Localization in the Bean Beetle <i>Callosobruchus maculatus</i> .<br>Applied and Environmental Microbiology, 2021, 87, e0021221.                                                                                                              | 3.1  | 7         |
| 14 | Generation of Tetracycline and Rifamycin Resistant Chlamydia Suis Recombinants. Frontiers in Microbiology, 2021, 12, 630293.                                                                                                                                                | 3.5  | 3         |
| 15 | Effect of genetic background on the evolution of Vancomycin-Intermediate <i>Staphylococcus<br/>aureus</i> (VISA). PeerJ, 2021, 9, e11764.                                                                                                                                   | 2.0  | 9         |
| 16 | The whale shark genome reveals patterns of vertebrate gene family evolution. ELife, 2021, 10, .                                                                                                                                                                             | 6.0  | 19        |
| 17 | Comparing wholeâ€genome shotgun sequencing and DNA metabarcoding approaches for species<br>identification and quantification of pollen species mixtures. Ecology and Evolution, 2021, 11,<br>16082-16098.                                                                   | 1.9  | 17        |
| 18 | Dynamic PET-facilitated modeling and high-dose rifampin regimens for <i>Staphylococcus aureus</i> orthopedic implant–associated infections. Science Translational Medicine, 2021, 13, eabl6851.                                                                             | 12.4 | 16        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bactopia: a Flexible Pipeline for Complete Analysis of Bacterial Genomes. MSystems, 2020, 5, .                                                                                                          | 3.8 | 82        |
| 20 | A Comparison of the Bacterial Nasal Microbiome in Allergic Rhinitis Patients Before and After<br>Immunotherapy. Laryngoscope, 2020, 130, E882-E888.                                                     | 2.0 | 13        |
| 21 | Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient<br>Lung Infections and Their Interactions with Pseudomonas aeruginosa. MBio, 2020, 11, .              | 4.1 | 45        |
| 22 | Glucocorticoid receptor sensitivity in early pregnancy in an African American cohort. American<br>Journal of Reproductive Immunology, 2020, 84, e13252.                                                 | 1.2 | 2         |
| 23 | Genomic analysis of variability in Delta-toxin levels between <i>Staphylococcus aureus</i> strains.<br>PeerJ, 2020, 8, e8717.                                                                           | 2.0 | 12        |
| 24 | Quantitative and qualitative assessment of pollen <scp>DNA</scp> metabarcoding using constructed species mixtures. Molecular Ecology, 2019, 28, 431-455.                                                | 3.9 | 114       |
| 25 | Interaction between Streptococcus pneumoniae and Staphylococcus aureus Generates <sup>·</sup> OH<br>Radicals That Rapidly Kill Staphylococcus aureus Strains. Journal of Bacteriology, 2019, 201, .     | 2.2 | 25        |
| 26 | Determinants of Phage Host Range in <i>Staphylococcus</i> Species. Applied and Environmental<br>Microbiology, 2019, 85, .                                                                               | 3.1 | 59        |
| 27 | Whole-Genome Sequences of Staphylococcus aureus Isolates from Cystic Fibrosis Lung Infections.<br>Microbiology Resource Announcements, 2019, 8, .                                                       | 0.6 | 13        |
| 28 | Invasive Nontypeable <i>Haemophilus influenzae</i> Infection Among Adults With HIV in Metropolitan<br>Atlanta, Georgia, 2008-2018. JAMA - Journal of the American Medical Association, 2019, 322, 2399. | 7.4 | 7         |
| 29 | Human mAbs to Staphylococcus aureus IsdA Provide Protection Through Both Heme-Blocking and Fc-Mediated Mechanisms. Journal of Infectious Diseases, 2019, 219, 1264-1273.                                | 4.0 | 20        |
| 30 | Genome-Based Prediction of Bacterial Antibiotic Resistance. Journal of Clinical Microbiology, 2019, 57,                                                                                                 | 3.9 | 221       |
| 31 | Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women:<br>the effect of socioeconomic status and antibiotic exposure. PeerJ, 2019, 7, e8004.                 | 2.0 | 31        |
| 32 | Whole genome sequencing for investigations of meningococcal outbreaks in the United States: a retrospective analysis. Scientific Reports, 2018, 8, 15803.                                               | 3.3 | 20        |
| 33 | USA300 Staphylococcus aureus persists on multiple body sites following an infection. BMC<br>Microbiology, 2018, 18, 206.                                                                                | 3.3 | 12        |
| 34 | Fine-scale differentiation between <i>Bacillus anthracis</i> and <i>Bacillus cereus</i> group signatures in metagenome shotgun data. PeerJ, 2018, 6, e5515.                                             | 2.0 | 5         |
| 35 | <i>Staphylococcus aureus</i> viewed from the perspective of 40,000+ genomes. PeerJ, 2018, 6, e5261.                                                                                                     | 2.0 | 66        |
| 36 | Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary<br>Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                             | 3.2 | 48        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Emergence of a new <i>Neisseria meningitidis</i> clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4237-4242.     | 7.1  | 79        |
| 38 | The Female Genital Tract Microbiome Is Associated With Vaginal Antiretroviral Drug Concentrations<br>in Human Immunodeficiency Virus–Infected Women on Antiretroviral Therapy. Journal of Infectious<br>Diseases, 2017, 216, 990-999. | 4.0  | 23        |
| 39 | Protocol for the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy<br>Cohort Study. BMC Pregnancy and Childbirth, 2017, 17, 161.                                                                       | 2.4  | 58        |
| 40 | Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828. BMC Genomics, 2017, 18, 532.                                                                                    | 2.8  | 91        |
| 41 | Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after<br>Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Frontiers in<br>Microbiology, 2017, 8, 156.     | 3.5  | 29        |
| 42 | Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants. PLoS ONE, 2017, 12, e0174701.                                                   | 2.5  | 27        |
| 43 | Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic<br>PCR assay. PLoS ONE, 2017, 12, e0178653.                                                                                        | 2.5  | 8         |
| 44 | Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution ofChlamydia suis: A Recently Identified Zoonotic Pathogen. Genome Biology and Evolution, 2016, 8, 2613-2623.                                         | 2.5  | 35        |
| 45 | Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nature<br>Microbiology, 2016, 1, 16053.                                                                                                             | 13.3 | 169       |
| 46 | Dynamics of genome change among Legionella species. Scientific Reports, 2016, 6, 33442.                                                                                                                                               | 3.3  | 18        |
| 47 | The single-species metagenome: subtyping <i>Staphylococcus aureus</i> core genome sequences from shotgun metagenomic data. PeerJ, 2016, 4, e2571.                                                                                     | 2.0  | 8         |
| 48 | 'SEEDY' (Simulation of Evolutionary and Epidemiological Dynamics): An R Package to Follow<br>Accumulation of Within-Host Mutation in Pathogens. PLoS ONE, 2015, 10, e0129745.                                                         | 2.5  | 24        |
| 49 | Population structure of <i>Neisseria gonorrhoeae</i> based on whole genome data and its relationship with antibiotic resistance. PeerJ, 2015, 3, e806.                                                                                | 2.0  | 67        |
| 50 | USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular<br>Polysaccharide Due to Conserved Mutations in the <i>cap5</i> Locus. MBio, 2015, 6, .                                                          | 4.1  | 82        |
| 51 | <i>Chlamydiaceae</i> Genomics Reveals Interspecies Admixture and the Recent Evolution<br>of <i>Chlamydia abortus</i> Infecting Lower Mammalian Species and Humans. Genome Biology and<br>Evolution, 2015, 7, 3070-3084.               | 2.5  | 30        |
| 52 | Transmission and Microevolution of USA300 MRSA in U.S. Households: Evidence from Whole-Genome<br>Sequencing. MBio, 2015, 6, e00054.                                                                                                   | 4.1  | 97        |
| 53 | Characterization of a spermine/spermidine transport system reveals a novel DNA sequence duplication in <i>Neisseria gonorrhoeae</i> . FEMS Microbiology Letters, 2015, 362, fnv125.                                                   | 1.8  | 7         |
| 54 | Overproduction of the MtrCDE Efflux Pump in Neisseria gonorrhoeae Produces Unexpected Changes<br>in Cellular Transcription Patterns. Antimicrobial Agents and Chemotherapy, 2015, 59, 724-726.                                        | 3.2  | 13        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Medicine, 2014, 6, 109.                                                                                          | 8.2  | 105       |
| 56 | Phase-Variable Expression of <i>lptA</i> Modulates the Resistance of Neisseria gonorrhoeae to Cationic Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 4230-4233.                                                                | 3.2  | 21        |
| 57 | Using Genomics To Standardize Population Analysis Profile-Area under the Curve Ratio for<br>Vancomycin-Intermediate Staphylococcus aureus. Journal of Clinical Microbiology, 2014, 52, 3824-3826.                                                         | 3.9  | 2         |
| 58 | Dissecting Vancomycin-Intermediate Resistance in Staphylococcus aureus Using Genome-Wide Association. Genome Biology and Evolution, 2014, 6, 1174-1185.                                                                                                   | 2.5  | 132       |
| 59 | The complete mitochondrial genome sequence of the world's largest fish, the whale shark<br>(Rhincodon typus), and its comparison with those of related shark species. Gene, 2014, 539, 44-49.                                                             | 2.2  | 34        |
| 60 | IsdB-dependent Hemoglobin Binding Is Required for Acquisition of Heme by Staphylococcus aureus.<br>Journal of Infectious Diseases, 2014, 209, 1764-1772.                                                                                                  | 4.0  | 88        |
| 61 | Using Crude Whole-Genome Assemblies of Neisseria gonorrhoeae as a Platform for Strain Analysis:<br>Clonal Spread of Gonorrhea Infection in Saskatchewan, Canada. Journal of Clinical Microbiology,<br>2014, 52, 3772-3776.                                | 3.9  | 18        |
| 62 | Genetic Evidence for the Involvement of the S-Layer Protein Gene <i>sap</i> and the Sporulation Genes<br><i>spo0A</i> , <i>spo0B</i> , and <i>spo0F</i> in Phage AP50c Infection of Bacillus anthracis. Journal<br>of Bacteriology, 2014, 196, 1143-1154. | 2.2  | 28        |
| 63 | Development of Oxacillin Resistance in a Patient with Recurrent Staphylococcus aureus Bacteremia.<br>Journal of Clinical Microbiology, 2014, 52, 3114-3117.                                                                                               | 3.9  | 7         |
| 64 | Predicting the virulence of MRSA from its genome sequence. Genome Research, 2014, 24, 839-849.                                                                                                                                                            | 5.5  | 210       |
| 65 | Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Applied and Environmental Microbiology, 2014, 80, 4162-4183.                                                                 | 3.1  | 54        |
| 66 | Direct Amplification, Sequencing and Profiling of Chlamydia trachomatis Strains in Single and Mixed<br>Infection Clinical Samples. PLoS ONE, 2014, 9, e99290.                                                                                             | 2.5  | 24        |
| 67 | Characterization of Aeromonas hydrophilaÂWound Pathotypes by Comparative Genomic and Functional<br>Analyses of Virulence Genes. MBio, 2013, 4, e00064-13.                                                                                                 | 4.1  | 71        |
| 68 | Comparative Analysis of Chlamydia psittaci Genomes Reveals the Recent Emergence of a Pathogenic<br>Lineage with a Broad Host Range. MBio, 2013, 4, .                                                                                                      | 4.1  | 90        |
| 69 | Genomic characterization of the <i>Bacillus cereus</i> sensu lato species: Backdrop to the evolution of <i>Bacillus anthracis</i> . Genome Research, 2012, 22, 1512-1524.                                                                                 | 5.5  | 148       |
| 70 | Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial<br>Community DNA Sample. PLoS ONE, 2012, 7, e30087.                                                                                                            | 2.5  | 360       |
| 71 | Genome-wide recombination in Chlamydia trachomatis. Nature Genetics, 2012, 44, 364-366.                                                                                                                                                                   | 21.4 | 20        |
| 72 | Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium. Genome Biology, 2012, 13, R30.                                                                             | 9.6  | 50        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Mutation in the PP2C Phosphatase Gene in a Staphylococcus aureus USA300 Clinical Isolate with<br>Reduced Susceptibility to Vancomycin and Daptomycin. Antimicrobial Agents and Chemotherapy, 2012,<br>56, 5212-5223. | 3.2 | 50        |
| 74 | Population Genomics of Chlamydia trachomatis: Insights on Drift, Selection, Recombination, and<br>Population Structure. Molecular Biology and Evolution, 2012, 29, 3933-3946.                                          | 8.9 | 94        |
| 75 | Whole genome sequencing of phage resistant Bacillus anthracismutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virology Journal, 2012, 9, 246.                      | 3.4 | 28        |
| 76 | A Multiplexed Microfluidic PCR Assay for Sensitive and Specific Point-of-Care Detection of Chlamydia trachomatis. PLoS ONE, 2012, 7, e51685.                                                                           | 2.5 | 14        |
| 77 | Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis. PLoS ONE, 2012, 7, e43350.                                                                                | 2.5 | 30        |
| 78 | Genomic Signatures of Strain Selection and Enhancement in Bacillus atrophaeus var. globigii, a<br>Historical Biowarfare Simulant. PLoS ONE, 2011, 6, e17836.                                                           | 2.5 | 41        |
| 79 | Genetic variation and linkage disequilibrium in Bacillus anthracis. Scientific Reports, 2011, 1, 169.                                                                                                                  | 3.3 | 7         |
| 80 | The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms. Annals of the New York Academy of Sciences, 2011, 1230, 74-107.                           | 3.8 | 5         |
| 81 | Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biology Direct, 2011, 6, 28.                                                                                                         | 4.6 | 70        |
| 82 | PheMaDB: A solution for storage, retrieval, and analysis of high throughput phenotype data. BMC<br>Bioinformatics, 2011, 12, 109.                                                                                      | 2.6 | 7         |
| 83 | Combined proteomic and transcriptomic analysis of the response of <i>Bacillus anthracis</i> to oxidative stress. Proteomics, 2011, 11, 3036-3055.                                                                      | 2.2 | 28        |
| 84 | Hypervirulent Chlamydia trachomatis Clinical Strain Is a Recombinant between Lymphogranuloma<br>Venereum (L <sub>2</sub> ) and D Lineages. MBio, 2011, 2, e00045-11.                                                   | 4.1 | 100       |
| 85 | Genome Sequences of the Zoonotic Pathogens Chlamydia psittaci 6BC and Cal10. Journal of Bacteriology, 2011, 193, 4039-4040.                                                                                            | 2.2 | 26        |
| 86 | Genome Sequence of the Obligate Intracellular Animal Pathogen Chlamydia pecorum E58. Journal of<br>Bacteriology, 2011, 193, 3690-3690.                                                                                 | 2.2 | 36        |
| 87 | <i>Bacillus anthracis</i> comparative genome analysis in support of the Amerithrax investigation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5027-5032.            | 7.1 | 152       |
| 88 | Unity in Variety–The Pan-Genome of the Chlamydiae. Molecular Biology and Evolution, 2011, 28, 3253-3270.                                                                                                               | 8.9 | 184       |
| 89 | Bacterial population genomics and infectious disease diagnostics. Trends in Biotechnology, 2010, 28, 611-618.                                                                                                          | 9.3 | 44        |
| 90 | Finishing genomes with limited resources: lessons from an ensemble of microbial genomes. BMC Genomics, 2010, 11, 242.                                                                                                  | 2.8 | 46        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips. PLoS ONE, 2010, 5, e10595.                                                                                                       | 2.5 | 12        |
| 92  | High-Redundancy Draft Sequencing of 15 Clinical and Environmental Burkholderia Strains. Journal of<br>Bacteriology, 2010, 192, 6313-6314.                                                       | 2.2 | 11        |
| 93  | Arbovirus Detection in Insect Vectors by Rapid, High-Throughput Pyrosequencing. PLoS Neglected<br>Tropical Diseases, 2010, 4, e878.                                                             | 3.0 | 53        |
| 94  | Rapid Identification of Genetic Modifications in Bacillus anthracis Using Whole Genome Draft<br>Sequences Generated by 454 Pyrosequencing. PLoS ONE, 2010, 5, e12397.                           | 2.5 | 27        |
| 95  | Genomic characterization of the Yersinia genus. Genome Biology, 2010, 11, R1.                                                                                                                   | 9.6 | 103       |
| 96  | Predicting Phenotype and Emerging Strains among <i>Chlamydia trachomatis</i> Infections. Emerging<br>Infectious Diseases, 2009, 15, 1385-1394.                                                  | 4.3 | 87        |
| 97  | DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics, 2009, 25, 962-963.                                                                                                  | 4.1 | 73        |
| 98  | Identification of Bacillus anthracis Spore Component Antigens Conserved across Diverse Bacillus cereus sensu lato Strains. Molecular and Cellular Proteomics, 2009, 8, 1174-1191.               | 3.8 | 15        |
| 99  | The Complete Genome Sequence of Bacillus anthracis Ames "Ancestor― Journal of Bacteriology, 2009,<br>191, 445-446.                                                                              | 2.2 | 88        |
| 100 | Quantitative characterization of quantum dotâ€labeled lambda phage for <i>Escherichia coli</i> detection. Biotechnology and Bioengineering, 2009, 104, 1059-1067.                               | 3.3 | 44        |
| 101 | A <i>Bacillus thuringiensis</i> strain producing a polyglutamate capsule resembling that of <i>Bacillus anthracis</i> . FEMS Microbiology Letters, 2008, 285, 220-226.                          | 1.8 | 33        |
| 102 | Characterization of Two <i>Campylobacter jejuni</i> Strains for Use in Volunteer<br>Experimental-Infection Studies. Infection and Immunity, 2008, 76, 5655-5667.                                | 2.2 | 43        |
| 103 | Molecular Characterization of a Variant of <i>Bacillus anthracis</i> -Specific Phage AP50 with<br>Improved Bacteriolytic Activity. Applied and Environmental Microbiology, 2008, 74, 6792-6796. | 3.1 | 56        |
| 104 | Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing. PLoS ONE, 2008, 3, e2513.                                                                                               | 2.5 | 20        |
| 105 | Genome Sequence of a Clinical Isolate of Campylobacter jejuni from Thailand. Infection and Immunity, 2007, 75, 3425-3433.                                                                       | 2.2 | 68        |
| 106 | Strain-Specific Single-Nucleotide Polymorphism Assays for the Bacillus anthracis Ames Strain. Journal of Clinical Microbiology, 2007, 45, 47-53.                                                | 3.9 | 126       |
| 107 | Genomic Plasticity of the rrn-nqrF Intergenic Segment in the Chlamydiaceae. Journal of Bacteriology, 2007, 189, 2128-2132.                                                                      | 2.2 | 7         |
| 108 | Genome Sequence of a Clinical Isolate of <i>Campylobacter jejuni</i> from Thailand. Infection and Immunity, 2007, 75, 4671-4671.                                                                | 2.2 | 0         |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages.<br>BMC Microbiology, 2006, 6, 34.                                                                                                         | 3.3  | 50        |
| 110 | Sequencing Bacillus anthracis Typing Phages Gamma and Cherry Reveals a Common Ancestry. Journal of Bacteriology, 2006, 188, 3402-3408.                                                                                                        | 2.2  | 49        |
| 111 | Chlamydiae. , 2005, , .                                                                                                                                                                                                                       |      | 0         |
| 112 | Formation and Composition of the Bacillus anthracis Endospore. Journal of Bacteriology, 2004, 186, 164-178.                                                                                                                                   | 2.2  | 187       |
| 113 | Horizontal Transfer of CS1 Pilin Genes of Enterotoxigenic Escherichia coli. Journal of Bacteriology, 2004, 186, 3230-3237.                                                                                                                    | 2.2  | 9         |
| 114 | Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from<br>whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of<br>America, 2004, 101, 13536-13541.          | 7.1  | 243       |
| 115 | The bcr1 DNA Repeat Element Is Specific to the Bacillus cereus Group and Exhibits Mobile Element Characteristics. Journal of Bacteriology, 2004, 186, 7714-7725.                                                                              | 2.2  | 19        |
| 116 | The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Research, 2004, 32, 977-988.                                                            | 14.5 | 273       |
| 117 | Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling<br>inhalation anthrax. Proceedings of the National Academy of Sciences of the United States of America,<br>2004, 101, 8449-8454.             | 7.1  | 457       |
| 118 | Microarray-based resequencing of multiple Bacillus anthracis isolates. Genome Biology, 2004, 6, R10.                                                                                                                                          | 9.6  | 64        |
| 119 | Complete genome sequence of the Q-fever pathogen <i>Coxiella burnetii </i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5455-5460.                                                           | 7.1  | 506       |
| 120 | The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature, 2003, 423, 81-86.                                                                                                                          | 27.8 | 760       |
| 121 | Molecular Analysis of the Multiple GroEL Proteins of Chlamydiae. Journal of Bacteriology, 2003, 185, 1958-1966.                                                                                                                               | 2.2  | 63        |
| 122 | Identification and Characterization of the gerH Operon of Bacillus anthracis Endospores: a<br>Differential Role for Purine Nucleosides in Germination. Journal of Bacteriology, 2003, 185, 1462-1464.                                         | 2.2  | 70        |
| 123 | Comparative Genome Sequencing for Discovery of Novel Polymorphisms in Bacillus anthracis.<br>Science, 2002, 296, 2028-2033.                                                                                                                   | 12.6 | 413       |
| 124 | The <i>Brucella suis</i> genome reveals fundamental similarities between animal and plant<br>pathogens and symbionts. Proceedings of the National Academy of Sciences of the United States of<br>America, 2002, 99, 13148-13153.              | 7.1  | 422       |
| 125 | Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V <i>Streptococcus agalactiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12391-12396. | 7.1  | 447       |
| 126 | Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nature<br>Biotechnology, 2002, 20, 1118-1123.                                                                                                        | 17.5 | 771       |

0

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Bacillus anthracis, a bug with attitude!. Current Opinion in Microbiology, 2001, 4, 78-81.                                                                                        | 5.1  | 94        |
| 128 | Complete Genome Sequence of a Virulent Isolate of <i>Streptococcus pneumoniae</i> . Science, 2001, 293, 498-506.                                                                  | 12.6 | 1,281     |
| 129 | Finding drug targets in microbial genomes. Drug Discovery Today, 2001, 6, 887-892.                                                                                                | 6.4  | 35        |
| 130 | DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 2000, 406, 477-483.                                                                             | 27.8 | 1,723     |
| 131 | Comparative Analysis of <i>Chlamydia</i> Bacteriophages Reveals Variation Localized to a Putative<br>Receptor Binding Domain. Microbial & Comparative Genomics, 2000, 5, 223-231. | 0.4  | 21        |
| 132 | Nucleotide Sequence Analysis of Hypervariable Junctions of Haemophilus influenzae Pilus Gene<br>Clusters. Infection and Immunity, 2000, 68, 6896-6902.                            | 2.2  | 9         |
| 133 | Copy Number of Pilus Gene Clusters in <i>Haemophilus influenzae</i> and Variation in the <i>hifE</i> Pilin Gene. Infection and Immunity, 1998, 66, 1622-1631.                     | 2.2  | 16        |
| 134 | Conserved extragenic DNA elements in Haemophilus influenzae. Molecular Microbiology, 1997, 23,<br>627-628.                                                                        | 2.5  | 7         |
| 135 | Evasion of type I and type II DNA restriction systems by Incl1 plasmid Collb-P9 during transfer by bacterial conjugation. Molecular Microbiology, 1992, 6, 1933-1941.             | 2.5  | 41        |
|     |                                                                                                                                                                                   |      |           |

Pathogenomics of Bacterial Biothreat Agents. , 0, , 232-266.