
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tricuspid Annular Displacement Predicts Survival in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1034-1041.	2.5	955
2	Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal Cardiovascular Imaging, 2018, 19, 591-600.	0.5	891
3	Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 396, 759-769.	6.3	481
4	Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 2005, 46, 2153-2167.	1.2	437
5	Two-Dimensional Strain–A Doppler-Independent Ultrasound Method for Quantitation of Regional Deformation: Validation In Vitro and In Vivo. Journal of the American Society of Echocardiography, 2005, 18, 1247-1253.	1.2	332
6	Role of Tissue Doppler and Strain Echocardiography in Current Clinical Practice. Circulation, 2007, 116, 2597-2609.	1.6	280
7	Impact of Arterial Load and Loading Sequence on Left Ventricular Tissue Velocities in Humans. Journal of the American College of Cardiology, 2007, 50, 1570-1577.	1.2	280
8	Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 2005, 46, 2168-2182.	1.2	193
9	Electrophysiological Consequences of Dyssynchronous Heart Failure and Its Restoration by Resynchronization Therapy. Circulation, 2009, 119, 1220-1230.	1.6	181
10	Inhibiting Mitochondrial Na ⁺ /Ca ²⁺ Exchange Prevents Sudden Death in a Guinea Pig Model of Heart Failure. Circulation Research, 2014, 115, 44-54.	2.0	152
11	Regional asynchrony during acute myocardial ischemia quantified by ultrasound strain rate imaging. Journal of the American College of Cardiology, 2001, 37, 1141-1148.	1.2	122
12	Clinical applications of strain rate imaging. Journal of the American Society of Echocardiography, 2003, 16, 1334-1342.	1.2	121
13	Magnetic Resonance Imaging Assessment of Ventricular Dyssynchrony. Journal of the American College of Cardiology, 2005, 46, 2223-2228.	1.2	113
14	Strain and strain rate echocardiography. Current Opinion in Cardiology, 2002, 17, 443-454.	0.8	112
15	Evidence of Impaired Left Ventricular Systolic Function by Doppler Myocardial Imaging in Patients With Systemic Amyloidosis and No Evidence of Cardiac Involvement by Standard Two-Dimensional and Doppler Echocardiography. American Journal of Cardiology, 2008, 101, 1039-1045.	0.7	108
16	Strain Rate Imaging for Assessment of Regional Myocardial Function. Circulation, 2002, 105, 1403-1406.	1.6	105
17	Strain rate and strain: A step-by-step approach to image and data acquisition. Journal of the American Society of Echocardiography, 2004, 17, 1011-1020.	1.2	101
18	Time to onset of regional relaxation: feasibility, variability and utility of a novel index of regional myocardial function by strain rate imaging. Journal of the American College of Cardiology, 2002, 39, 1531-1537.	1.2	100

#	Article	IF	CITATIONS
19	Echocardiography in Hypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2008, 1, 787-800.	2.3	99
20	Usefulness of Two-Dimensional Speckle Strain for Evaluation of Left Ventricular Diastolic Deformation in Patients With Coronary Artery Disease. American Journal of Cardiology, 2006, 98, 1581-1586.	0.7	91
21	Left atrial myopathy in cardiac amyloidosis: implications of novel echocardiographic techniques. European Heart Journal, 2005, 26, 173-179.	1.0	90
22	Effect of the mitral valve on diastolic flow patterns. Physics of Fluids, 2014, 26, .	1.6	86
23	Relation of Tissue Displacement and Strain to Invasively Determined Right Ventricular Stroke Volume. American Journal of Cardiology, 2005, 96, 1173-1178.	0.7	79
24	Comparison of Usefulness of Echocardiographic Doppler Variables to Left Ventricular End-Diastolic Pressure in Predicting Future Heart Failure Events. American Journal of Cardiology, 2006, 97, 866-871.	0.7	78
25	Utilizing ECG-Based Heartbeat Classification for Hypertrophic Cardiomyopathy Identification. IEEE Transactions on Nanobioscience, 2015, 14, 505-512.	2.2	75
26	Unique Abnormalities in Right Ventricular Longitudinal Strain in Systemic Sclerosis Patients. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	67
27	Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice. Cardiovascular Research, 2009, 82, 84-92.	1.8	62
28	Low Left Atrial Strain Is Associated With Adverse Outcomes in Hypertrophic Cardiomyopathy Patients. Journal of the American Society of Echocardiography, 2019, 32, 593-603.e1.	1.2	62
29	Doppler Myocardial Imaging for Early Detection of Right Ventricular Dysfunction in Patients With Pulmonary Hypertension. Journal of the American Society of Echocardiography, 2008, 21, 1035-1041.	1.2	59
30	Effect of Mavacamten on Echocardiographic Features in Symptomatic Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2021, 78, 2518-2532.	1.2	59
31	Hypertrophic Cardiomyopathy Patients With Paroxysmal Atrial Fibrillation Have a High Burden of Left Atrial Fibrosis by Cardiac Magnetic Resonance Imaging. JACC: Clinical Electrophysiology, 2019, 5, 364-375.	1.3	56
32	Relationship of Delayed Enhancement by Magnetic Resonance to Myocardial Perfusion by Positron Emission Tomography in Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2013, 6, 210-217.	1.3	54
33	Evaluation of Structural Progression in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. JAMA Cardiology, 2017, 2, 293.	3.0	53
34	Role of Global Longitudinal Strain in Predicting Outcomes in Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2017, 120, 670-675.	0.7	53
35	Right Ventricular Function in Asymptomatic Individuals with a Systemic Right Ventricle. Journal of the American Society of Echocardiography, 2006, 19, 1033-1037.	1.2	51
36	The Burden of Early Phenotypes and the Influence of Wall Thickness in Hypertrophic Cardiomyopathy Mutation Carriers. JAMA Cardiology, 2017, 2, 419.	3.0	50

#	Article	IF	CITATIONS
37	Clinical Outcomes in Patients With Nonobstructive, Labile, and Obstructive Hypertrophic Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	1.6	47
38	Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model). American Journal of Cardiology, 2019, 123, 1681-1689.	0.7	47
39	PET/CT Assessment of Symptomatic Individuals with Obstructive and Nonobstructive Hypertrophic Cardiomyopathy. Journal of Nuclear Medicine, 2012, 53, 407-414.	2.8	46
40	Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. Journal of the American Society of Echocardiography, 2022, 35, 533-569.	1.2	46
41	Creatine Kinase Adenosine Triphosphate and Phosphocreatine Energy Supply in a Single Kindred of Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2013, 112, 861-866.	0.7	45
42	MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H71-H79.	1.5	45
43	Myocardial contractility by strain echocardiography: comparison with physiological measurements in an in vitro model. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2599-H2604.	1.5	44
44	Comparison of Clinical Presentation, Left Ventricular Morphology, Hemodynamics, and Exercise Tolerance in Obese Versus Nonobese Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2013, 112, 1182-1189.	0.7	42
45	Contribution of Central Adiposity to Left Ventricular Diastolic Function (from the Baltimore) Tj ETQq1 1 0.784	314 rgBT /C	overlock 10 Tf
46	Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis. Intensive Care Medicine Experimental, 2017, 5, 21.	0.9	41
47	Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis. Journal of the American College of Cardiology, 2004, 44, 1664-1671.	1.2	38
48	Left ventricular wall thickness in patients with hypertrophic cardiomyopathy: a comparison between cardiac magnetic resonance imaging and echocardiography. International Journal of Cardiovascular Imaging, 2016, 32, 945-954.	0.7	37
49	Prevalence and Pathophysiologic Attributes of Ventricular Dyssynchrony in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Journal of the American College of Cardiology, 2009, 54, 445-451.	1.2	34
50	American Society of Echocardiography Cardiovascular Technology and Research Summit: A Roadmap for 2020. Journal of the American Society of Echocardiography, 2013, 26, 325-338.	1.2	34
51	Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight, 2018, 3, .	2.3	33
52	Analysis of the Interaction Between Segmental Relaxation Patterns and Global Diastolic Function by Strain Echocardiography. Journal of the American Society of Echocardiography, 2005, 18, 901-906.	1.2	32
53	Imaging Cardiac Resynchronization Therapy. JACC: Cardiovascular Imaging, 2009, 2, 486-497.	2.3	31
54	Pacemaker-induced transient asynchrony suppresses heart failure progression. Science Translational Medicine, 2015, 7, 319ra207.	5.8	31

#	ARTICLE	IF	CITATIONS
55	Stress Myocardial Blood Flow Heterogeneity Is a Positron Emission Tomography Biomarker of Ventricular Arrhythmias in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2018, 121, 1081-1089.	0.7	31
56	Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly. Heart, 2016, 102, 1087-1094.	1.2	30
57	Comparison of Outcomes in Patients With Nonobstructive, Labile-Obstructive, and Chronically Obstructive Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2015, 116, 938-944.	0.7	29
58	Strain Echocardiography Parameters Correlate With Disease Severity in Children and Infants With Sepsis*. Pediatric Critical Care Medicine, 2016, 17, 383-390.	0.2	29
59	Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice. Journal of Molecular and Cellular Cardiology, 2014, 74, 318-329.	0.9	24
60	Prevalence, Clinical Correlates, and Functional Impact of Subaortic Ventricular Septal Bulge (from) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
61	Comparison and Effectiveness of Regadenoson Versus Dipyridamole on Stress Electrocardiographic Changes During Positron Emission Tomography Evaluation of Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2012, 110, 1033-1039.	0.7	22
62	E/e′ ratio and outcome prediction in hypertrophic cardiomyopathy: the influence of outflow tract obstruction. European Heart Journal Cardiovascular Imaging, 2018, 19, 101-107.	0.5	22
63	Exercise Heart Rates in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2015, 115, 1144-1150.	0.7	21
64	Diffuse interstitial fibrosis assessed by cardiac magnetic resonance is associated with dispersion of ventricular repolarization in patients with hypertrophic cardiomyopathy. Journal of Arrhythmia, 2017, 33, 201-207.	0.5	21
65	The E-wave propagation index (EPI): A novel echocardiographic parameter for prediction of left ventricular thrombus. Derivation from computational fluid dynamic modeling and validation on human subjects. International Journal of Cardiology, 2017, 227, 662-667.	0.8	20
66	Speckle-Derived Strain. Journal of the American College of Cardiology, 2008, 51, 158-160.	1.2	18
67	Effect of Diffuse Subendocardial Hypoperfusion on Left Ventricular Cavity Size by 13N-Ammonia Perfusion PET in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 118, 1908-1915.	0.7	18
68	Apparent left ventricular cavity dilatation during PET/CT in hypertrophic cardiomyopathy: Clinical predictors and potential mechanisms. Journal of Nuclear Cardiology, 2016, 23, 1304-1314.	1.4	18
69	Sex-specific cardiac phenotype and clinical outcomes in patients with hypertrophic cardiomyopathy. American Heart Journal, 2020, 219, 58-69.	1.2	18
70	Impact of peak provoked left ventricular outflow tract gradients on clinical outcomes in hypertrophic cardiomyopathy. International Journal of Cardiology, 2017, 243, 290-295.	0.8	17
71	Defining the Role of Point-of-Care Ultrasound in Cardiovascular Disease. American Journal of Cardiology, 2018, 122, 1443-1450.	0.7	17
72	Late gadolinium enhancement confined to the right ventricular insertion points in hypertrophic cardiomyopathy: an intermediate stage phenotype?. European Heart Journal Cardiovascular Imaging, 2016, 17, 293-300.	0.5	16

#	Article	IF	CITATIONS
73	Influence of Atrial Function and Mechanical Synchrony on LV Hemodynamic Status in Heart Failure Patients on Resynchronization Therapy. JACC: Cardiovascular Imaging, 2011, 4, 691-698.	2.3	15
74	Comparison of Clinical Features in Blacks Versus Whites With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 117, 1815-1820.	0.7	15
75	Is echocardiographic assessment of dyssynchrony useful to select candidates for cardiac resynchronization therapy?. Circulation: Cardiovascular Imaging, 2008, 1, 79-85.	1.3	14
76	Computing Myocardial Motion in 4-Dimensional Echocardiography. Ultrasound in Medicine and Biology, 2012, 38, 1284-1297.	0.7	14
77	Criteria predicting response to CRT: is more better?. European Heart Journal, 2009, 30, 2835-2837.	1.0	12
78	Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS ONE, 2016, 11, e0156065.	1.1	12
79	Rest and Stress Longitudinal Systolic Left Ventricular Mechanics in Hypertrophic Cardiomyopathy: Implications for Prognostication. Journal of the American Society of Echocardiography, 2018, 31, 578-586.	1.2	12
80	Stress-induced regional features of left ventricle is related to pathogenesis of clinical conditions with both acute and chronic stress. International Journal of Cardiology, 2010, 145, 367-368.	0.8	11
81	Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation. Journal of Cardiovascular Translational Research, 2013, 6, 852-860.	1.1	11
82	Sildenafil treatment attenuates ventricular remodeling in an experimental model of aortic regurgitation. SpringerPlus, 2015, 4, 592.	1.2	11
83	Safety profile and utility of treadmill exercise in patients with high-gradient hypertrophic cardiomyopathy. American Heart Journal, 2017, 184, 47-54.	1.2	10
84	Myocardial Dyssynchrony and Resynchronization. Heart Failure Clinics, 2006, 2, 179-192.	1.0	9
85	Electromechanical Relationship in Hypertrophic Cardiomyopathy. Journal of Cardiovascular Translational Research, 2013, 6, 604-615.	1.1	9
86	Could early septal involvement in the remodeling process be related to the advance hypertensive heart disease?. IJC Heart and Vasculature, 2015, 7, 141-145.	0.6	9
87	Comparison of two software systems for quantification of myocardial blood flow in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2019, 26, 1243-1253.	1.4	8
88	Higher incidence of vasodilator-induced left ventricular cavity dilation by PET when compared to treadmill exercise-ECHO in hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2020, 27, 2031-2043.	1.4	8
89	Echocardiographic Characterization of a Murine Model of Hypertrophic Obstructive Cardiomyopathy Induced by Cardiac-specific Overexpression of Epidermal Growth Factor Receptor 2. Comparative Medicine, 2016, 66, 268-77.	0.4	8
90	Exercise hypertension should be recalled in basal septal hypertrophy as the early imaging biomarker in patients with stressed heart morphology. Blood Pressure Monitoring, 2020, 25, 118-119.	0.4	7

#	Article	IF	CITATIONS
91	Long-Term Implications of Abnormal Left Ventricular Strain During Sepsis. Critical Care Medicine, 2021, 49, e444-e453.	0.4	7
92	Machine Learning Methods for Identifying Atrial Fibrillation Cases and Their Predictors in Patients With Hypertrophic Cardiomyopathy: The HCM-AF-Risk Model. CJC Open, 2021, 3, 801-813.	0.7	7
93	Structural and Functional Correlates of Myocardial T1 Mapping in 321 Patients With Hypertrophic Cardiomyopathy. Journal of Computer Assisted Tomography, 2017, 41, 653-660.	0.5	6
94	The peripheral blood transcriptome in septic cardiomyopathy: an observational, pilot study. Intensive Care Medicine Experimental, 2019, 7, 57.	0.9	6
95	Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound. Journal of Visualized Experiments, 2014, , .	0.2	6
96	QRS Width and Mechanical Dyssynchrony for Selection of Patients for Cardiac Resynchronization Therapy. JACC: Cardiovascular Imaging, 2010, 3, 141-143.	2.3	5
97	Myocardial Aspects in Aortic Stenosis and Functional Increased Afterload Conditions in Patients with Stressed Heart Morphology. Annals of Thoracic and Cardiovascular Surgery, 2021, 27, 332-334.	0.3	5
98	New Approach to Intracardiac Hemodynamic Measurements in Small Animals. Journal of Ultrasound in Medicine, 2012, 31, 1233-1238.	0.8	4
99	Exercise-QTc is associated with diffuse interstitial fibrosis reflected by lower approximated T1 relaxation time in hypertrophic cardiomyopathy patients. Journal of Electrocardiology, 2017, 50, 484-490.	0.4	4
100	Identification of myocardial infarction using three-dimensional strain tensor fractional anisotropy. , 2010, 2010, 468-471.		3
101	Age-related changes in familial hypertrophic cardiomyopathy phenotype in transgenic mice and humans. Journal of Huazhong University of Science and Technology [Medical Sciences], 2014, 34, 634-639.	1.0	3
102	Mapping the cardiac acousteome: An overview of technologies, tools and methods. , 2015, , .		3
103	Hypertension should be ruled out in patients with hyperdynamic left ventricle on radionuclide myocardial perfusion imaging, diastolic dysfunction and dyspnea on exertion. IJC Heart and Vasculature, 2015, 7, 149-150.	0.6	3
104	Echo-Strain to Check Up on CheckpointÂInhibitors. Journal of the American College of Cardiology, 2020, 75, 479-481.	1.2	3
105	Effects of early and late-onset treatment with carvedilol in an experimental model of aortic regurgitation. SpringerPlus, 2015, 4, 52.	1.2	2
106	Hemodynamic stress and microscopic remodeling. International Journal of Cardiology Cardiovascular Risk and Prevention, 2021, 11, 200115.	0.4	2
107	The Role of Echocardiography in Hemodynamic Assessment in Heart Failure. Ultrasound Clinics, 2009, 4, 149-166.	0.2	1
108	Response to Letters Regarding Article, "Electrocardiographic Features of Arrhythmogenic Right Ventricular Dysplasia― Circulation, 2010, 121, .	1.6	1

#	Article	IF	CITATIONS
109	CT characterization of myocardial substrate in hypertrophic cardiomyopathy. Journal of Cardiovascular Computed Tomography, 2014, 8, 166-169.	0.7	1
110	Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 982-983.	1.2	1
111	T1 mapping with cardiovascular magnetic resonance: an emerging clinical biomarker. Heart, 2017, 103, 326.1-326.	1.2	1
112	OUP accepted manuscript. European Heart Journal Cardiovascular Imaging, 2022, , .	0.5	1
113	Two Classic Hemodynamic Findings for Hypertrophic Cardiomyopathy. Circulation, 2014, 129, e519-20.	1.6	0
114	Current obstacles in management of hypertensive patients by performance-based care and importance of diagnostic tests IJC Heart and Vasculature, 2015, 9, 73-74.	0.6	0
115	A Good Heart Is Hard to Find. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	0
116	Evanescent Microbubbles After CardiacÂMechanical Support. JACC: Case Reports, 2020, 2, 503-504.	0.3	0
117	Ionizing radiation exposure alters coronary and cardiac function. FASEB Journal, 2013, 27, lb672.	0.2	0
118	Abstract 17186: Left Atrial Strain Predicts Adverse Outcomes in Hypertrophic Cardiomyopathy. Circulation, 2018, 138, .	1.6	0
119	Ultimate phases of hypertensive heart disease and stressed heart morphology by conventional and novel cardiac imaging. American Journal of Cardiovascular Disease, 2021, 11, 628-634.	0.5	О