
NoemÃ- Kaoru Yokobori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900235/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Susceptibility to Apoptosis of CD56dimCD16+ NK Cells Induces the Enrichment of IFN-γ-Producing CD56bright Cells in Tuberculous Pleurisy. Journal of Immunology, 2005, 175, 6852-6860.	0.8	85
2	Patients with Multidrug-Resistant Tuberculosis Display Impaired Th1 Responses and Enhanced Regulatory T-Cell Levels in Response to an Outbreak of Multidrug-Resistant <i>Mycobacterium tuberculosis</i> M and Ra Strains. Infection and Immunity, 2009, 77, 5025-5034.	2.2	67
3	Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood. Journal of Leukocyte Biology, 2011, 90, 69-75.	3.3	66
4	<i>Mycobacterium tuberculosis</i> -Induced Gamma Interferon Production by Natural Killer Cells Requires Cross Talk with Antigen-Presenting Cells Involving Toll-Like Receptors 2 and 4 and the Mannose Receptor in Tuberculous Pleurisy. Infection and Immunity, 2007, 75, 5325-5337.	2.2	49
5	<i>Mycobacterium tuberculosis</i> impairs dendritic cell response by altering CD1b, DC IGN and MR profile. Immunology and Cell Biology, 2010, 88, 716-726.	2.3	45
6	NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology, 2005, 116, 051025020346008.	4.4	42
7	Spontaneous orMycobacterium tuberculosis-induced apoptotic neutrophils exert opposite effects on the dendritic cell-mediated immune response. European Journal of Immunology, 2007, 37, 1524-1537.	2.9	41
8	In Tuberculous Pleural Effusions, Activated Neutrophils Undergo Apoptosis and Acquire a Dendritic Cell–Like Phenotype. Journal of Infectious Diseases, 2005, 192, 399-409.	4.0	38
9	Impaired dendritic cell differentiation of CD16â€positive monocytes in tuberculosis: Role of p38 MAPK. European Journal of Immunology, 2013, 43, 335-347.	2.9	38
10	CD4+CD25highforkhead box protein 3+ regulatory T lymphocytes suppress interferon-Î ³ and CD107 expression in CD4+ and CD8+ T cells from tuberculous pleural effusions. Clinical and Experimental Immunology, 2014, 175, 235-245.	2.6	30
11	The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle. Microbial Pathogenesis, 2019, 131, 158-163.	2.9	28
12	CD3 expression distinguishes two $\hat{1}^{3}\hat{1}$ T cell receptor subsets with different phenotype and effector function in tuberculous pleurisy. Clinical and Experimental Immunology, 2009, 157, 385-394.	2.6	20
13	NK cells from tuberculous pleurisy express high ICAMâ€1 levels and exert stimulatory effect on local T cells. European Journal of Immunology, 2009, 39, 2450-2458.	2.9	13
14	Mycobacterium tuberculosis Multidrug Resistant Strain M Induces an Altered Activation of Cytotoxic CD8+ T Cells. PLoS ONE, 2014, 9, e97837.	2.5	12
15	<i>Mycobacterium tuberculosis</i> Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- <i>α</i> Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators of Inflammation, 2017, 2017, 1-13.	3.0	11
16	Two genetically-related multidrug-resistant Mycobacterium tuberculosis strains induce divergent outcomes of infection in two human macrophage models. Infection, Genetics and Evolution, 2013, 16, 151-156.	2.3	9
17	Trends of Two Epidemic Multidrug-Resistant Strains of Mycobacterium tuberculosis in Argentina Disclosed by Tailored Molecular Strategy. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1308-1311.	1.4	9
18	Consequences of the Lack of IL-10 in Different Endotoxin Effects and its Relationship With Glucocorticoids. Shock, 2019, 52, 264-273.	2.1	8

NoemÃ-Kaoru Yokobori

#	Article	IF	CITATIONS
19	Genetic Identification and Drug-Resistance Characterization of Mycobacterium tuberculosis Using a Portable Sequencing Device. A Pilot Study. Antibiotics, 2020, 9, 548.	3.7	8
20	C5aR contributes to the weak Th1 profile induced by an outbreak strain of Mycobacterium tuberculosis. Tuberculosis, 2017, 103, 16-23.	1.9	7
21	Differential induction of macrophage cell death by antigens of a clustered and a non-clustered multidrug-resistantMycobacterium tuberculosisstrain from Haarlem family. FEMS Immunology and Medical Microbiology, 2012, 66, 363-371.	2.7	6
22	Relation of Mycobacterium tuberculosis mutations at katG 315 and inhA -15 with drug resistance profile, genetic background, and clustering in Argentina. Diagnostic Microbiology and Infectious Disease, 2017, 89, 197-201.	1.8	6
23	Performance of a highly successful outbreak strain of Mycobacterium tuberculosis in a multifaceted approach to bacterial fitness assessment. International Journal of Medical Microbiology, 2018, 308, 349-357.	3.6	6
24	Recurrences of multidrugâ€resistant tuberculosis: Strains involved, withinâ€host diversity, and fineâ€tuned allocation of reinfections. Transboundary and Emerging Diseases, 2022, 69, 327-336.	3.0	6
25	Survival of an epidemic MDR strain of Mycobacterium tuberculosis and its non-prosperous variant within activated macrophages. Infection, Genetics and Evolution, 2019, 73, 248-254.	2.3	3
26	Five-year microevolution of a multidrug-resistant Mycobacterium tuberculosis strain within a patient with inadequate compliance to treatment. BMC Infectious Diseases, 2021, 21, 394.	2.9	3
27	The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis, 2022, 134, 102200.	1.9	2
28	Assessment of nutrient starvation-driven stress as part of a multifaceted approach to analyze the fitness of a highly successful MDR strain of Mycobacterium tuberculosis. International Journal of Infectious Diseases, 2018, 73, 352-353.	3.3	1
29	Genotypic diversity of Mycobacterium tuberculosis in two distinct areas of Argentina. International Journal of Infectious Diseases, 2018, 73, 351-352.	3.3	0