
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors, 2010, 10, 4855-4886.	3.8	718
2	N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 5243-5250.	14.6	238
3	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	3.3	204
4	Enhanced Photovoltaic Performance of FASnI ₃ -Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive. ACS Energy Letters, 2018, 3, 1584-1589.	17.4	187
5	Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode. Electrochimica Acta, 2011, 56, 5266-5271.	5.2	177
6	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye‧ensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	14.9	174
7	Coadditive Engineering with 5-Ammonium Valeric Acid Iodide for Efficient and Stable Sn Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 278-284.	17.4	153
8	Simultaneous Determination of Hydroquinone and Catechol at an Activated Glassy Carbon Electrode. Electroanalysis, 2010, 22, 694-700.	2.9	147
9	Graphene Nanoplatelets Doped with N at its Edges as Metalâ€Free Cathodes for Organic Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 3055-3062.	21.0	140
10	Perovskite solar cells with an MoS ₂ electron transport layer. Journal of Materials Chemistry A, 2019, 7, 7151-7158.	10.3	116
11	Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Solar Energy Materials and Solar Cells, 2011, 95, 184-189.	6.2	112
12	Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Scientific Reports, 2016, 6, 30094.	3.3	97
13	Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. Science Advances, 2016, 2, e1501459.	10.3	88
14	High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy, 2015, 13, 336-345.	16.0	85
15	Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosensors and Bioelectronics, 2019, 126, 143-150.	10.1	85
16	Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light: Science and Applications, 2020, 9, 156.	16.6	85
17	A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators B: Chemical, 2014, 202, 536-542.	7.8	84
18	Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 1044-1052.	30.8	82

#	Article	IF	CITATIONS
19	Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics. Nano Energy, 2019, 58, 466-475.	16.0	79
20	Indoor-type photovoltaics with organic solar cells through optimal design. Dyes and Pigments, 2018, 159, 306-313.	3.7	70
21	Highly Efficient Indoor Organic Photovoltaics with Spectrally Matched Fluorinated Phenyleneâ€Alkoxybenzothiadiazoleâ€Based Wide Bandgap Polymers. Advanced Functional Materials, 2019, 29, 1901171.	14.9	69
22	Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 2017, 792, 54-60.	3.8	68
23	Application of ionic liquids for metal dissolution and extraction. Journal of Industrial and Engineering Chemistry, 2018, 61, 388-397.	5.8	66
24	Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 1. Analytical Expressions. Journal of Physical Chemistry B, 2004, 108, 5269-5281.	2.6	65
25	Stand-alone photoconversion of carbon dioxide on copper oxide wire arrays powered by tungsten trioxide/dye-sensitized solar cell dual absorbers. Nano Energy, 2016, 25, 51-59.	16.0	58
26	B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell. Chemistry of Materials, 2014, 26, 3586-3591.	6.7	57
27	Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Solar Energy, 2018, 171, 652-657.	6.1	56
28	Elucidating the effect of shunt losses on the performance of mesoporous perovskite solar cells. Solar Energy, 2019, 193, 956-961.	6.1	56
29	Highly Sensitive and Selective Detection of Dopamine at Poly(chromotrope 2B)-Modified Glassy Carbon Electrode in the Presence of Uric Acid and Ascorbic Acid. Electrochimica Acta, 2015, 173, 440-447.	5.2	55
30	Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Electrochimica Acta, 2013, 109, 39-45.	5.2	50
31	Stable Triple-Cation (Cs ⁺ –MA ⁺ –FA ⁺) Perovskite Powder Formation under Ambient Conditions for Hysteresis-Free High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 29941-29949.	8.0	50
32	Highly Efficient Indoor Organic Solar Cells by Voltage Loss Minimization through Fine-Tuning of Polymer Structures. ACS Applied Materials & Interfaces, 2019, 11, 36905-36916.	8.0	49
33	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	10.3	49
34	Ni(OH)2-decorated nitrogen doped MWCNT nanosheets as an efficient electrode for high performance supercapacitors. Scientific Reports, 2019, 9, 6034.	3.3	48
35	Selective detection of l-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2015, 754, 87-93.	3.8	47
36	One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. Journal of Solid State Electrochemistry, 2019, 23, 503-512.	2.5	46

#	Article	IF	CITATIONS
37	Electrochemical Impedance Spectroscopic Analysis of Sensitizationâ€Based Solar Cells. Israel Journal of Chemistry, 2015, 55, 990-1001.	2.3	45
38	Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations. Journal of Physical Chemistry B, 2004, 108, 5282-5293.	2.6	44
39	N-Doped Hierarchical Hollow Mesoporous Carbon as Metal-Free Cathode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16694-16702.	3.1	44
40	Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4333.	2.8	40
41	Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells. Solar Energy, 2019, 181, 243-250.	6.1	37
42	Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale, 2016, 8, 5884-5891.	5.6	36
43	Ternary Blend Strategy for Achieving Highâ€Efficiency Organic Photovoltaic Devices for Indoor Applications. Chemistry - A European Journal, 2019, 25, 6154-6161.	3.3	36
44	Photocatalytic Chemoselective C–C Bond Cleavage at Room Temperature in Dye-Sensitized Photoelectrochemical Cells. ACS Catalysis, 2021, 11, 3771-3781.	11.2	35
45	Highly stable and conductive PEDOT:PSS/graphene nanocomposites for biosensor applications in aqueous medium. New Journal of Chemistry, 2017, 41, 15458-15465.	2.8	33
46	The effects of crystal structure on the photovoltaic performance of perovskite solar cells under ambient indoor illumination. Solar Energy, 2021, 220, 43-50.	6.1	33
47	Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dyes and Pigments, 2021, 194, 109626.	3.7	33
48	Electrodeposition and Nucleation of Copper at Nitrogen-Incorporated Tetrahedral Amorphous Carbon Electrodes in Basic Ambient Temperature Chloroaluminate Melts. Journal of the Electrochemical Society, 2001, 148, C183.	2.9	31
49	Panchromatic absorption of dye sensitized solar cells by co-Sensitization of triple organic dyes. Sustainable Energy and Fuels, 2018, 2, 209-214.	4.9	31
50	Revealing the structural effects of non-fullerene acceptors on the performances of ternary organic photovoltaics under indoor light conditions. Nano Energy, 2020, 75, 104934.	16.0	30
51	Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2018, 62, 185-191.	5.8	29
52	Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 199-211.	4.9	29
53	Effect of binary additives in mixed 2D/3D Sn-based perovskite solar cells. Journal of Power Sources, 2021, 491, 229574.	7.8	29
54	Aluminum Deposition and Nucleation on Nitrogen-Incorporated Tetrahedral Amorphous Carbon Electrodes in Ambient Temperature Chloroaluminate Melts. Journal of the Electrochemical Society, 2000, 147, 3370.	2.9	28

#	Article	IF	CITATIONS
55	A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics. Journal of Materials Chemistry A, 2021, 9, 15294-15300.	10.3	27
56	Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 7405-7415.	8.0	27
57	Electronic defect passivation of FASnI3 films by simultaneous Hydrogen-bonding and chlorine co-ordination for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133745.	12.7	26
58	Fermi energy level tuning for high performance dye sensitized solar cells using sp2 selective nitrogen-doped carbon nanotube channels. Physical Chemistry Chemical Physics, 2012, 14, 5255.	2.8	25
59	Ultrasensitive and label-free detection of annexin A3 based on quartz crystal microbalance. Sensors and Actuators B: Chemical, 2013, 177, 172-177.	7.8	25
60	Binary redox electrolytes used in dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2019, 78, 53-65.	5.8	25
61	Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Solar Energy, 2019, 185, 307-314.	6.1	25
62	Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. Chemosensors, 2021, 9, 98.	3.6	25
63	Deprotonation of N3 adsorbed on TiO2 for high-performance dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A, 2013, 1, 13439.	10.3	24
64	Postâ€Deposition Vapor Annealing Enables Fabrication of 1 cm 2 Leadâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900245.	5.8	23
65	Interference-Free Determination of Dopamine at the Poly(thionine)-Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2011, 158, F106-F110.	2.9	22
66	Label-Free Detection of DNA Hybridization by Using Charge Perturbation on Poly(thionine)-Modified Glassy Carbon and Gold Electrodes. Journal of the Electrochemical Society, 2015, 162, B159-B162.	2.9	22
67	Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors. Nanomaterials, 2021, 11, 395.	4.1	22
68	Cosensitization of metal-based dyes for high-performance dye-sensitized photovoltaics under ambient lighting conditions. Dyes and Pigments, 2021, 194, 109624.	3.7	22
69	Electrodeposition of Gold on Fluorine-Doped Tin Oxide: Characterization and Application for Catalytic Oxidation of Nitrite. Bulletin of the Korean Chemical Society, 2014, 35, 2072-2076.	1.9	22
70	ZnO-Coated TiO2 Nanotube Arrays for a Photoelectrode in Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2014, 43, 375-380.	2.2	21
71	Nanostructured copper–cobalt based spinel for the electrocatalytic H2O2 reduction reaction. Electrochimica Acta, 2018, 273, 474-482.	5.2	21
72	Formation of 1-D/3-D Fused Perovskite for Efficient and Moisture Stable Solar Cells. ACS Applied Energy Materials, 2021, 4, 2751-2760.	5.1	21

#	Article	IF	CITATIONS
73	Novel energy relay dyes for high efficiency dye-sensitized solar cells. Nanoscale, 2015, 7, 3526-3531.	5.6	20
74	Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells. Materials Letters, 2018, 223, 109-111.	2.6	20
75	Sensitivity control of dopamine detection by conducting poly(thionine). Electrochemistry Communications, 2021, 125, 107005.	4.7	20
76	Highly conductive and stable graphene/PEDOT:PSS composite as a metal free cathode for organic dye-sensitized solar cells. RSC Advances, 2018, 8, 19058-19066.	3.6	19
77	Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. Journal of Materials Chemistry C, 2020, 8, 1686-1696.	5.5	19
78	Electro-active nanofibers of a tetrathiafulvalene derivative with amide hydrogen bonds as a dopant-free hole transport material for perovskite solar cells. Solar Energy, 2019, 194, 248-253.	6.1	17
79	Configurationally Random Polythiophene for Improved Polymer Ordering and Charge-Transporting Ability. ACS Applied Materials & Interfaces, 2020, 12, 40599-40606.	8.0	16
80	Halogen-free guanidinium-based perovskite solar cell with enhanced stability. RSC Advances, 2018, 8, 17365-17372.	3.6	15
81	Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application. Polymers, 2020, 12, 1666.	4.5	15
82	Novel dopant-free hole-transporting materials for efficient perovskite solar cells. Solar Energy, 2020, 206, 279-286.	6.1	15
83	Fabrication of GaAs, In _{<i>x</i>} Ga _{1–<i>x</i>} As and Their ZnSe Core/Shell Colloidal Quantum Dots. Journal of the American Chemical Society, 2016, 138, 16568-16571.	13.7	14
84	Simultaneous and Interference-Free Detection of Hydroquinone and Catechol on Poly (Evans) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 302
85	Guanidine Nitrate (GuNO3) as an Efficient Additive in the Electrolyte of Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 201, 151-157.	5.2	14
86	A Conducting Poly(N-(1-Naphthyl)ethylenediamine dihydrochloride) Nanofibers for the Sensitive and Interference-Free Detection of Dopamine. Journal of the Electrochemical Society, 2018, 165, B89-B95.	2.9	14
87	Standardizing Performance Measurement of Dye-Sensitized Solar Cells for Indoor Light Harvesting. IEEE Access, 2020, 8, 114752-114760.	4.2	14
88	Facile Electrochemical Synthesis of Highly Efficient Copper–Cobalt Oxide Nanostructures for Oxygen Evolution Reactions. Journal of the Electrochemical Society, 2020, 167, 026510.	2.9	14
89	Review—Research Needs for Photovoltaics in the 21st Century. ECS Journal of Solid State Science and Technology, 2020, 9, 125010.	1.8	14
90	Investigating the Role of I2SCNâ^' on the Fermi Level of Electrolyte for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 161, 95-99.	5.2	13

#	Article	IF	CITATIONS
91	Optimization of hierarchical light-scattering layers in TiO2 photoelectrodes of dye-sensitized solar cells. Solar Energy, 2016, 134, 399-405.	6.1	13
92	Formation of uniform PbS quantum dots by a spin-assisted successive precipitation and anion exchange reaction process using PbX2 (X = Br, I) and Na2S precursors. RSC Advances, 2017, 7, 3072-3077.	3.6	13
93	Cross-conjugated BODIPY pigment for highly efficient dye sensitized solar cells. Sustainable Energy and Fuels, 2020, 4, 1908-1914.	4.9	13
94	Effect of the TiO ₂ Nanotubes in the Photoelectrode on Efficiency of Dye-sensitized Solar Cell. Journal of Electrochemical Science and Technology, 2011, 2, 110-115.	2.2	13
95	Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO ₂ Nanorod Arrays. ACS Applied Materials & Interfaces, 2022, 14, 22799-22809.	8.0	13
96	Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode. Journal of Electrochemical Science and Technology, 2012, 3, 90-94.	2.2	12
97	A near-infrared thienyl-BODIPY co-sensitizer for high-efficiency dye-sensitized solar cells. Sustainable Energy and Fuels, 2019, 3, 2983-2989.	4.9	12
98	Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 525-546.	2.2	12
99	Effects of Phenylalkanoic Acids as Co-Adsorbents on the Performance of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2013, 13, 7880-7885.	0.9	11
100	Solvothermal growth of 3D flower-like CoS@FTO as high-performance counter electrode for dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 6929-6935.	2.2	11
101	Trimethylsulfonium lead triiodide (TMSPbI ₃) for moisture-stable perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 4327-4335.	4.9	11
102	Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. Journal of Electroanalytical Chemistry, 2021, 898, 115628.	3.8	11
103	Inclusion of triphenylamine unit in dopant-free hole transport material for enhanced interfacial interaction in perovskite photovoltaics. Dyes and Pigments, 2022, 200, 110162.	3.7	10
104	Surface Modification of Gold by Quercetin Monolayer for the Electrochemical Determination of Copper(II). Electroanalysis, 2008, 20, 1690-1695.	2.9	9
105	Effects of TiCl ₄ Post-Treatment on the Efficiency of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 8870-8875.	0.9	9
106	Binary Redox Couples for Highly Transparent and High-Voltage Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2021, 10, 025007.	1.8	9
107	<scp>Structurallyâ€ŧuned</scp> benzo[1,2â€b:4,5:b'] <scp>dithiopheneâ€based</scp> polymer as a <scp>dopantâ€free</scp> hole transport material for perovskite solar cells. Journal of Polymer Science, 2022, 60, 985-991.	3.8	9
108	A Poly(trypan blue)-Modified Anodized Glassy Carbon Electrode for the Sensitive Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid. Journal of the Electrochemical Society, 2017, 164, B34-B39.	2.9	8

#	Article	IF	CITATIONS
109	A non-absorbing organic redox couple for sensitization-based solar cells with metal-free polymer counter electrode. Electrochimica Acta, 2018, 286, 39-46.	5.2	8
110	Intercalation-type electrodes of copper–cobalt oxides for high-energy-density supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113947.	3.8	7
111	Trapâ€Assisted Transition Energy Levels of SrF ₂ :Pr ³⁺ â^'Yb ³⁺ Nanophosphor in TiO ₂ Photoanode for Luminescence Tuning in Dyeâ€Sensitized Photovoltaic Cells. Solar Rrl, 2021, 5, 2100411.	5.8	7
112	Aqueous phase synthesis of trimethylsulfoxonium lead triiodide for moisture-stable perovskite solar cells. Materials Today Energy, 2021, 21, 100803.	4.7	7
113	Advances in electrochemical aptasensing for cardiac biomarkers. Bulletin of the Korean Chemical Society, 2022, 43, 51-68.	1.9	7
114	Sensitivity Control of Labelâ€free <scp>DNA</scp> Hybridization Detection Based on Poly(thionine)â€Modified Glassy Carbon and Gold Electrodes. Bulletin of the Korean Chemical Society, 2017, 38, 27-32.	1.9	6
115	Effect of the TiO2 Nanotubes in the Photoelectrode on Efficiency of Dye-sensitized Solar Cell. Journal of Electrochemical Science and Technology, 2011, 2, 110-115.	2.2	6
116	Thin-Film Luminescent Solar Concentrator Based on Intramolecular Charge Transfer Fluorophore and Effect of Polymer Matrix on Device Efficiency. Polymers, 2021, 13, 3770.	4.5	6
117	Concentrated perovskite photovoltaics enable minimization of energy loss below 0.5 eV under artificial lightâ€emitting diode illumination. International Journal of Energy Research, 0, , .	4.5	6
118	A Facile Synthesis of Granular ZnO Nanostructures for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-6.	2.5	5
119	Glass Frit Dissolution Influenced by Material Composition and the Water Content in Iodide/Triiodide Electrolyte of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-8.	2.5	5
120	Electrochemical Descaling of Metal Oxides from Stainless Steel Using an Ionic Liquid–Acid Solution. ACS Omega, 2020, 5, 15709-15714.	3.5	5
121	Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chemical Engineering Journal, 2022, 446, 137351.	12.7	5
122	Double Modification of Electrode Surface for the Selective Detection of Epinephrine and Its Application to Flow Injection Amperometric Analysis. Electroanalysis, 2009, 21, NA-NA.	2.9	4
123	Preliminary Investigation on Vacancy Filling by Small Molecules on the Performance of Dye-Sensitized Solar Cells: The Case of a Type-II Absorber. Frontiers in Chemistry, 2021, 9, 701781.	3.6	3
124	Large-Scale Production of APbX ₃ Perovskites in Powder Form with High Stability. Nanoscience and Nanotechnology Letters, 2018, 10, 1025-1034.	0.4	3
125	Role of electrolyte at the interface and in the dispersion of graphene in organic solvents. Journal of Materials Science: Materials in Electronics, 2020, 31, 404-413.	2.2	2
126	Graphene Nanoplatelets–Nickel Nanoparticles Hybrid Counter Electrodes for Low-Cost and Efficient Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2021, 10, 055001.	1.8	2

#	Article	IF	CITATIONS
127	Stable electrolyte dielectric engineered bottom-gate poly(3-hexylthiophene) transistors with enhanced mobility. Organic Electronics, 2022, 102, 106430.	2.6	2
128	Ethylene-Polypropylene Copolymer as an Effective Sealing Spacer for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 8045-8052.	0.9	1
129	Postâ€Deposition Vapor Annealing Enables Fabrication of 1 cm ² Leadâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1970114.	5.8	1
130	Effect of residual electrolyte on dispersion stability of graphene in aqueous solution. Journal of Solid State Electrochemistry, 2021, 25, 617-626.	2.5	1
131	Standâ€Alone Photoelectrochemical Energy Conversions. Solar Rrl, 2021, 5, 2000517.	5.8	1
132	Modulation of energy levels and vertical charge transport in polythiophene through copolymerization of non-fluorinated and fluorinated units for organic indoor photovoltaics. Dyes and Pigments, 2021, 190, 109292.	3.7	1
133	Development of Blocking Layer Paste for Making Module By Screen Printing Procedure. ECS Meeting Abstracts, 2020, MA2020-02, 1887-1887.	0.0	1
134	The Effect of Particle Size and Thickness on Nanocrystalline TiO2 Films on Dye-Sensitized Solar Cells for Indoor Application. ECS Meeting Abstracts, 2020, MA2020-02, 1890-1890.	0.0	1

9