Mostafa Haghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900223/publications.pdf

Version: 2024-02-01

1040056 940533 23 862 9 citations h-index papers

g-index 23 23 23 1076 docs citations times ranked citing authors all docs

16

#	Article	IF	CITATIONS
1	Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthcare Informatics Research, 2017, 23, 4.	1.9	519
2	A Flexible and Pervasive IoT-Based Healthcare Platform for Physiological and Environmental Parameters Monitoring. IEEE Internet of Things Journal, 2020, 7, 5628-5647.	8.7	100
3	Unobtrusive Health Monitoring in Private Spaces: The Smart Home. Sensors, 2021, 21, 864.	3.8	66
4	Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle. Sensors, 2020, 20, 2442.	3.8	37
5	Wearable Devices in Health Monitoring from the Environmental towards Multiple Domains: A Survey. Sensors, 2021, 21, 2130.	3.8	30
6	A Low-Cost, Standalone, and Multi-Tasking Watch for Personalized Environmental Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1144-1154.	4.0	21
7	Pervasive and Personalized Ambient Parameters Monitoring: A Wearable, Modular, and Configurable Watch. IEEE Access, 2019, 7, 20126-20143.	4.2	16
8	New Dual-Input Zero-Voltage Switching DC–DC Boost Converter for Low-Power Clean Energy Applications. IEEE Transactions on Power Electronics, 2021, 36, 11532-11542.	7.9	13
9	A new <scp>dualâ€input threeâ€winding coupledâ€inductor</scp> based <scp>DCâ€DC</scp> boost converter for renewable energy applications. International Transactions on Electrical Energy Systems, 2021, 31, .	1.9	10
10	Proposing an International Standard Accident Number for Interconnecting Information and Communication Technology Systems of the Rescue Chain. Methods of Information in Medicine, 2021, 60, e20-e31.	1.2	9
11	A three-layer multi-sensor wearable device for physical environmental parameters and NO2 monitoring. , 2017, , .		6
12	Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters. Applied Sciences (Switzerland), 2020, 10, 5470.	2.5	6
13	General Conceptual Framework of Future Wearables in Healthcare: Unified, Unique, Ubiquitous, and Unobtrusive (U4) for Customized Quantified Output. Chemosensors, 2020, 8, 85.	3.6	6
14	Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN). Healthcare (Switzerland), 2021, 9, 996.	2.0	6
15	Toward a New Approach in Wearable Devices in Safety Monitoring: Miniaturization and 3D Space Utilization. SLAS Technology, 2019, 24, 444-447.	1.9	4
16	Ubiqsense: A Personal Wearable in Ambient Parameters Monitoring based on IoT Platform*., 2019,,.		4
17	A Multi-Tasking, Multi-Layer and Replaceable Wrist-Worn Environmental Monitoring Sensor Node. , 2018, , .		3
18	An Investigation on the Effects of Subnet Extension on Delay and Throughput in Network-on-Chip. Journal of Circuits, Systems and Computers, 2016, 25, 1650015.	1.5	2

#	Article	IF	CITATIONS
19	A multi-layer multi-sensor wearable device for physical and chemical environmental parameters monitoring (CO & NO < inf > $2 < /$ inf > $)$., 2017, , .		2
20	Four-layer wrist worn device for sound level and hazardous gases environmental monitoring. , 2017, , .		1
21	A Ubiquitous and Configurable Wrist-Worn Sensor Node in Hazardous Gases Detection. Advances in Science, Technology and Engineering Systems, 2018, 3, 248-257.	0.5	1
22	Low power and adjustable biomedical sensor interface system. International Journal of Biomedical Engineering and Technology, 2018, 26, 157.	0.2	0
23	Low power and adjustable biomedical sensor interface system. International Journal of Biomedical Engineering and Technology, 2018, 26, 157.	0.2	0