Ingo Hertrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1900040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus Paper: Language and the Cerebellum: an Ongoing Enigma. Cerebellum, 2014, 13, 386-410.	1.4	347
2	Identification of emotional intonation evaluated by fMRI. NeuroImage, 2005, 24, 1233-1241.	2.1	306
3	fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology, 2005, 64, 700-706.	1.5	283
4	The role of the supplementary motor area for speech and language processing. Neuroscience and Biobehavioral Reviews, 2016, 68, 602-610.	2.9	196
5	The Temporal Control of Repetitive Articulatory Movements in Parkinson's Disease. Brain and Language, 1997, 56, 312-319.	0.8	157
6	Distinct Frontal Regions Subserve Evaluation of Linguistic and Emotional Aspects of Speech Intonation. Cerebral Cortex, 2004, 14, 1384-1389.	1.6	157
7	Oral Diadochokinesis in Neurological Dysarthrias. Folia Phoniatrica Et Logopaedica, 1995, 47, 15-23.	0.5	129
8	The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: An fMRI study. NeuroImage, 2010, 50, 1219-1230.	2.1	127
9	Cerebellum and Speech Perception: A Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2002, 14, 902-912.	1.1	105
10	Control of repetitive lip and finger movements in parkinson's disease: Influence of external timing signals and simultaneous execution on motor performance. Movement Disorders, 1997, 12, 665-676.	2.2	101
11	Categorical Speech Perception in Cerebellar Disorders. Brain and Language, 1997, 60, 323-331.	0.8	97
12	Kinematic analysis of articulatory movements in central motor disorders. Movement Disorders, 1997, 12, 1019-1027.	2.2	95
13	The contribution of the cerebellum to speech processing. Journal of Neurolinguistics, 2000, 13, 95-116.	0.5	90
14	Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. Neurolmage, 2004, 21, 154-162.	2.1	90
15	Hearing Lips: Gamma-band Activity During Audiovisual Speech Perception. Cerebral Cortex, 2005, 15, 646-653.	1.6	83
16	Mismatch responses to randomized gradient switching noise as reflected by fMRI and whole-head magnetoencephalography. Human Brain Mapping, 2002, 16, 190-195.	1.9	81
17	Acquired dysfluencies following infarction of the left mesiofrontal cortex. Aphasiology, 1996, 10, 409-417.	1.4	72
18	Gender-Specific Vocal Dysfunctions in Parkinson's Disease: Electroglottographic and Acoustic Analyses. Annals of Otology, Rhinology and Laryngology, 1995, 104, 197-202.	0.6	68

#	Article	IF	CITATIONS
19	Speech Rate and Rhythm in Cerebellar Dysarthria: An Acoustic Analysis of Syllabic Timing. Folia Phoniatrica Et Logopaedica, 1994, 46, 70-78.	0.5	66
20	Magnetic brain activity phaseâ€locked to the envelope, the syllable onsets, and the fundamental frequency of a perceived speech signal. Psychophysiology, 2012, 49, 322-334.	1.2	62
21	Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. NeuroImage, 2006, 30, 1376-1382.	2.1	61
22	The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Frontiers in Human Neuroscience, 2021, 15, 645209.	1.0	60
23	The Margins of the Language Network in the Brain. Frontiers in Communication, 2020, 5, .	0.6	59
24	Voice Onset Time in Ataxic Dysarthria. Brain and Language, 1997, 56, 321-333.	0.8	57
25	Cerebellar Contributions to the Perception of Temporal Cues within the Speech and Nonspeech Domain. Brain and Language, 1999, 67, 228-241.	0.8	57
26	Cortical activation patterns of affective speech processing depend on concurrent demands on the subvocal rehearsal system A DC-potential study. Brain, 2000, 123, 2338-2349.	3.7	52
27	Speech perception deficits in Parkinson's disease: underestimation of time intervals compromises identification of durational phonetic contrasts. Brain and Language, 2002, 82, 65-74.	0.8	48
28	A cerebellar-like terminal and postural tremor induced in normal man by transcranial magnetic stimulation. Brain, 1999, 122, 1551-1562.	3.7	46
29	Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar – a functional magnetic resonance imaging (fMRI) study. BMC Neuroscience, 2013, 14, 74.	0.8	45
30	Articulatory control of phonological vowel length contrasts: Kinematic analysis of labial gestures. Journal of the Acoustical Society of America, 1997, 102, 523-536.	0.5	42
31	Acoustic Analysis of Speech Timing in Huntington′s Disease. Brain and Language, 1994, 47, 182-196.	0.8	41
32	Speech Disorders following Severe Traumatic Brain Injury: Kinematic Analysis of Syllable Repetitions Using Electromagnetic Articulography. Folia Phoniatrica Et Logopaedica, 2000, 52, 187-196.	0.5	41
33	Kinematic Analysis of Lower Lip Movements in Ataxic Dysarthria. Journal of Speech, Language, and Hearing Research, 1995, 38, 1252-1259.	0.7	40
34	Hemispheric lateralization of the neural encoding of temporal speech features: a whole-head magnetencephalography study. Cognitive Brain Research, 1999, 7, 511-518.	3.3	40
35	Encoding of temporal speech features (formant transients) during binaural and dichotic stimulus application:. Cognitive Brain Research, 2000, 10, 125-131.	3.3	38
36	Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50/M100 fields. NeuroReport, 2000, 11, 4017-4020.	0.6	37

#	Article	IF	CITATIONS
37	Coarticulation in Slow Speech: Durational and Spectral Analysis. Language and Speech, 1995, 38, 159-187.	0.6	36
38	Temporal and Spectral Aspects of Coarticulation in Ataxic Dysarthria. Journal of Speech, Language, and Hearing Research, 1999, 42, 367-381.	0.7	36
39	Lip–jaw and tongue–jaw coordination during rate-controlled syllable repetitions. Journal of the Acoustical Society of America, 2000, 107, 2236-2247.	0.5	36
40	Fractal dimension of sustained vowel productions in neurological dysphonias: An acoustic and electroglottographic analysis. Journal of the Acoustical Society of America, 1997, 102, 652-654.	0.5	35
41	Cross-modal Interactions during Perception of Audiovisual Speech and Nonspeech Signals: An fMRI Study. Journal of Cognitive Neuroscience, 2011, 23, 221-237.	1.1	35
42	Contralaterality of cortical auditory processing at the level of the M50/M100 complex and the mismatch field: A whole-head magnetoencephalography study. NeuroReport, 2001, 12, 1683-1687.	0.6	33
43	Dysarthria in Friedreich's ataxia: Timing of speech segments. Clinical Linguistics and Phonetics, 1993, 7, 75-91.	0.5	32
44	Phonemic Vowel Length Contrasts in Cerebellar Disorders. Brain and Language, 1999, 67, 95-109.	0.8	32
45	Hemispheric lateralization of the processing of consonant-vowel syllables (formant transitions): effects of stimulus characteristics and attentional demands on evoked magnetic fields. Neuropsychologia, 2002, 40, 1902-1917.	0.7	32
46	Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex. Neurocase, 2009, 15, 163-170.	0.2	32
47	Functional cerebral asymmetries of pitch processing during dichotic stimulus application: a whole-head magnetoencephalography study. Neuropsychologia, 2002, 40, 585-593.	0.7	30
48	Tracking the speech signal – Time-locked MEG signals during perception of ultra-fast and moderately fast speech in blind and in sighted listeners. Brain and Language, 2013, 124, 9-21.	0.8	28
49	Understanding the emotional expression of verbal interjections: a functional MRI study. NeuroReport, 2008, 19, 1751-1755.	0.6	27
50	Sequential audiovisual interactions during speech perception: A whole-head MEG study. Neuropsychologia, 2007, 45, 1342-1354.	0.7	26
51	Preattentive processing of consonant vowel syllables at the level of the supratemporal plane: a whole-head magnetencephalography study. Cognitive Brain Research, 1999, 8, 251-257.	3.3	21
52	Spatial auditory attention is modulated by tactile priming. Experimental Brain Research, 2005, 164, 41-47.	0.7	21
53	Acoustic analysis of speech prosody in Huntington's and Parkinson's disease: A preliminary report. Clinical Linguistics and Phonetics, 1993, 7, 285-297.	0.5	20
54	Dysprosody in Parkinson's disease: an investigation of intonation patterns. Clinical Linguistics and Phonetics, 2001, 15, 551-566.	0.5	19

#	Article	IF	CITATIONS
55	Neural correlates of duplex perception: a whole-head magnetencephalography study. NeuroReport, 2001, 12, 501-506.	0.6	19
56	The right supratemporal plane hears the distance of objects: neuromagnetic correlates of virtual reality. NeuroReport, 2003, 14, 307-311.	0.6	19
57	Transient and phase-locked evoked magnetic fields in response to periodic acoustic signals. NeuroReport, 2004, 15, 1687-1690.	0.6	19
58	Who is telling what from where? A functional magnetic resonance imaging study. NeuroReport, 2007, 18, 405-409.	0.6	19
59	When the polar bear encounters many polar bears: event-related potential context effects evoked by uniqueness failure. Language, Cognition and Neuroscience, 2014, 29, 1147-1162.	0.7	19
60	A vowel synthesizer based on formant sinusoids modulated by fundamental frequency. Journal of the Acoustical Society of America, 1999, 106, 2988-2990.	0.5	18
61	Temporal processing capabilities in repetition conduction aphasia. Brain and Cognition, 2010, 73, 194-202.	0.8	18
62	Training of ultra-fast speech comprehension induces functional reorganization of the central-visual system in late-blind humans. Frontiers in Human Neuroscience, 2013, 7, 701.	1.0	18
63	Experience-Related Structural Changes of Degenerated Occipital White Matter in Late-Blind Humans – A Diffusion Tensor Imaging Study. PLoS ONE, 2015, 10, e0122863.	1.1	18
64	Speech iterations in parkinsonism: A case study. Aphasiology, 1993, 7, 395-406.	1.4	17
65	Stroboscopic articulography using fast magnetic resonance imaging. International Journal of Language and Communication Disorders, 2000, 35, 419-425.	0.7	17
66	Dysphonia Subsequent to Severe Traumatic Brain Injury: Comparative Perceptual, Acoustic and Electroglottographic Analyses. Folia Phoniatrica Et Logopaedica, 2001, 53, 326-337.	0.5	17
67	MEG responses to rippled noise and Huggins pitch reveal similar cortical representations. NeuroReport, 2005, 16, 193-196.	0.6	17
68	Time Course of Early Audiovisual Interactions during Speech and Nonspeech Central Auditory Processing: A Magnetoencephalography Study. Journal of Cognitive Neuroscience, 2009, 21, 259-274.	1.1	17
69	Semiotic aspects of human nonverbal vocalizations: a functional imaging study. NeuroReport, 2007, 18, 1891-1894.	0.6	16
70	Neuromagnetic signatures of syllable processing in fetuses and infants provide no evidence for habituation. Early Human Development, 2016, 100, 61-66.	0.8	15
71	Selective influences of cross-modal spatial-cues on preattentive auditory processing: A whole-head magnetoencephalography study. NeuroImage, 2005, 28, 627-634.	2.1	14
72	How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?. Frontiers in Psychology, 2013, 4, 530.	1.1	14

#	Article	IF	CITATIONS
73	Context-dependent impact of presuppositions on early magnetic brain responses during speech perception. Brain and Language, 2015, 149, 1-12.	0.8	12
74	Auditory perceptual evaluation of rhythm-manipulated and resynthesized sentence utterances obtained from cerebellar patients and normal speakers: A preliminary report. Clinical Linguistics and Phonetics, 1998, 12, 427-437.	0.5	10
75	Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli. Neuropsychologia, 2004, 42, 1814-1826.	0.7	10
76	Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners. PLoS ONE, 2015, 10, e0132196.	1.1	10
77	Predictability modulates motor–auditory interactions in self-triggered audio–visual apparent motion. Experimental Brain Research, 2008, 189, 289-300.	0.7	9
78	Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening. PLoS ONE, 2012, 7, e31936.	1.1	9
79	Articulatory disorders in primary progressive aphasia: An acoustic and kinematic analysis. Aphasiology, 1997, 11, 1017-1030.	1.4	8
80	Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study. NeuroImage, 2019, 202, 116047.	2.1	7
81	The Role of the Cerebellum in Speech Perception and Language Comprehension. , 2016, , 33-50.		6
82	Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area. Frontiers in Neuroscience, 2018, 12, 361.	1.4	5
83	The influence of critical bands on neuromagnetic fields evoked by speech stimuli in humans. Neuroscience Letters, 2002, 329, 29-32.	1.0	4
84	Processing of dynamic aspects of speech and non-speech stimuli: a whole-head magnetoencephalography study. Cognitive Brain Research, 2003, 17, 130-139.	3.3	4
85	Cortical phase locking to accelerated speech in blind and sighted listeners prior to and after training. Brain and Language, 2018, 185, 19-29.	0.8	4
86	Dysarthria in Friedreich's ataxia: Syllable intensity and fundamental frequency patterns. Clinical Linguistics and Phonetics, 1993, 7, 177-190.	0.5	3
87	Neural processing of acoustic duration and phonological German vowel length: Time courses of evoked fields in response to speech and nonspeech signals. Brain and Language, 2013, 124, 117-131.	0.8	3
88	Neurophonetics. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 191-200.	1.4	3
89	Brief Report: Impaired Differentiation of Vegetative/Affective and Intentional Nonverbal Vocalizations in a Subject with Asperger Syndrome (AS). Journal of Autism and Developmental Disorders, 2012, 42, 2219-2224.	1.7	0