
Yifeng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899983/publications.pdf Version: 2024-02-01

VIEENC 7HIL

#	Article	IF	CITATIONS
1	Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes. Reaction Chemistry and Engineering, 2022, 7, 844-854.	3.7	43
2	Catalytic Conversion of 5â€Hydroxymethylfurfural to Highâ€Value Derivatives by Selective Activation of Câ^'O, C=O, and C=C Bonds. ChemSusChem, 2022, 15, .	6.8	16
3	Regulation of BrÃ,nsted acid sites to enhance the decarburization of hexoses to furfural. Catalysis Science and Technology, 2022, 12, 3506-3515.	4.1	6
4	Continuous production of 1,4-pentanediol from ethyl levulinate and industrialized furfuryl alcohol over Cu-based catalysts. Sustainable Energy and Fuels, 2022, 6, 2449-2461.	4.9	6
5	Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel. Nature Communications, 2022, 13, 2742.	12.8	24
6	N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural. Chinese Journal of Catalysis, 2022, 43, 2212-2222.	14.0	16
7	Conversion of glucose to levulinic acid and upgradation to γ-valerolactone on Ru/TiO ₂ catalysts. New Journal of Chemistry, 2021, 45, 14406-14413.	2.8	5
8	Sustainable production of γ-valerolactone and δ-valerolactone through the coupling of hydrogenation and dehydrogenation. Sustainable Energy and Fuels, 2021, 5, 930-934.	4.9	13
9	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	13.7	54
10	Highly selective glucose isomerization by HY zeolite in gamma-butyrolactone/H2O system over fixed bed reactor. Catalysis Communications, 2021, 156, 106324.	3.3	8
11	Highly effective production of levulinic acid and γ-valerolactone through self-circulation of solvent in a continuous process. Reaction Chemistry and Engineering, 2021, 6, 1811-1818.	3.7	4
12	Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nature Communications, 2020, 11, 5849.	12.8	86
13	Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catalysis Science and Technology, 2020, 10, 7323-7330.	4.1	14
14	Inverse iron oxide/metal catalysts from galvanic replacement. Nature Communications, 2020, 11, 3269.	12.8	31
15	Synergistic effect between copper and different metal oxides in the selective hydrogenolysis of glucose. New Journal of Chemistry, 2019, 43, 3733-3742.	2.8	15
16	Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10670-10678.	6.7	57
17	Oneâ€step Conversion of Fructose to Furfuryl Alcohol in a Continuous Fixedâ€bed Reactor: The Important Role of Supports. ChemCatChem, 2019, 11, 2118-2125.	3.7	5
18	Mechanistic insights on catalytic conversion fructose to furfural on beta zeolite via selective carbon-carbon bond cleavage. Molecular Catalysis, 2019, 463, 130-139.	2.0	38

#	Article	IF	CITATIONS
19	Aqueous Hydrogenation of Levulinic Acid to 1,4â€Pentanediol over Moâ€Modified Ru/Activated Carbon Catalyst. ChemSusChem, 2018, 11, 1316-1320.	6.8	73
20	Selectively convert fructose to furfural or hydroxymethylfurfural on Beta zeolite: The manipulation of solvent effects. Applied Catalysis B: Environmental, 2018, 235, 150-157.	20.2	55
21	Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chemistry, 2018, 20, 3657-3682.	9.0	233
22	Strong metal-oxide interactions induce bifunctional and structural effects for Cu catalysts. Molecular Catalysis, 2018, 458, 73-82.	2.0	20
23	Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate. Molecular Catalysis, 2017, 433, 346-353.	2.0	42
24	Efficient decarbonylation of 5-hydroxymethylfurfural over an Pd/Al2O3 catalyst: Preparation via electrostatic attraction between Pd(II) complex and anionic Al2O3. Molecular Catalysis, 2017, 433, 111-121.	2.0	5
25	Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catalysis Science and Technology, 2017, 7, 1880-1891.	4.1	22
26	The role of water on the selective decarbonylation of 5-hydroxymethylfurfural over Pd/Al 2 O 3 catalyst: Experimental and DFT studies. Applied Catalysis B: Environmental, 2017, 212, 15-22.	20.2	29
27	Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 2017, 7, 2800-2804.	11.2	188
28	Efficient Synthesis of Furfuryl Alcohol and 2â€Methylfuran from Furfural over Mineralâ€Đerived Cu/ZnO Catalysts. ChemCatChem, 2017, 9, 3023-3030.	3.7	64
29	Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 11280-11289.	6.7	73
30	Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation. Catalysis Science and Technology, 2017, 7, 5625-5634.	4.1	57
31	Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017, 353, 315-324.	6.2	47
32	Introduction to Characterization Methods for Heterogeneous Catalysts and Their Application to Cellulose Conversion Mechanisms. Biofuels and Biorefineries, 2017, , 31-96.	0.5	0
33	Modulating the methanation activity of Ni by the crystal phase of TiO ₂ . Catalysis Science and Technology, 2017, 7, 2813-2818.	4.1	29
34	Study on the reaction pathway in decarbonylation of biomass-derived 5-hydroxymethylfurfural over Pd-based catalyst. Journal of Molecular Catalysis A, 2016, 421, 76-82.	4.8	32
35	One-Step Continuous Conversion of Fructose to 2,5-Dihydroxymethylfuran and 2,5-Dimethylfuran. ACS Sustainable Chemistry and Engineering, 2016, 4, 4506-4510.	6.7	52
36	Efficient hydrogenation of dimethyl oxalate to methyl glycolate over highly active immobilized-ruthenium catalyst. Journal of Molecular Catalysis A, 2016, 425, 68-75.	4.8	19

#	Article	IF	CITATIONS
37	Enhanced Nickel-Catalyzed Methanation Confined under Hexagonal Boron Nitride Shells. ACS Catalysis, 2016, 6, 6814-6822.	11.2	95
38	The effect of Mg(OH)2 on furfural oxidation with H2O2. Catalysis Communications, 2016, 86, 41-45.	3.3	23
39	Vanadium-oxo immobilized onto Schiff base modified graphene oxide for efficient catalytic oxidation of 5-hydroxymethylfurfural and furfural into maleic anhydride. RSC Advances, 2016, 6, 101277-101282.	3.6	28
40	Conversion of Xylose to Furfuryl Alcohol and 2â€Methylfuran in a Continuous Fixedâ€Bed Reactor. ChemSusChem, 2016, 9, 1259-1262.	6.8	39
41	Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chemistry, 2016, 18, 2302-2307.	9.0	79
42	Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst. Catalysis Science and Technology, 2016, 6, 2377-2386.	4.1	45
43	Selective conversion of syngas to light olefins. Science, 2016, 351, 1065-1068.	12.6	1,063
44	Role of alkali earth metals over Pd/Al ₂ O ₃ for decarbonylation of 5-hydroxymethylfurfural. Catalysis Science and Technology, 2016, 6, 4377-4388.	4.1	29
45	Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst. Catalysis Science and Technology, 2016, 6, 1469-1475.	4.1	66
46	Conversion of carbohydrates to furfural via selective cleavage of the carbon–carbon bond: the cooperative effects of zeolite and solvent. Green Chemistry, 2016, 18, 1619-1624.	9.0	88
47	Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols. Green Chemistry, 2016, 18, 782-791.	9.0	52
48	Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. Catalysis Science and Technology, 2016, 6, 767-779.	4.1	92
49	Exploring Furfural Catalytic Conversion on Cu(111) from Computation. ACS Catalysis, 2015, 5, 4020-4032.	11.2	109
50	Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chemistry, 2015, 17, 2504-2514.	9.0	173
51	Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt–WOx/Al2O3 catalysts. Journal of Molecular Catalysis A, 2015, 398, 391-398.	4.8	125
52	Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts. Catalysis Science and Technology, 2015, 5, 4208-4217.	4.1	132
53	Oneâ€step Conversion of Furfural into 2â€Methyltetrahydrofuran under Mild Conditions. ChemSusChem, 2015, 8, 1534-1537.	6.8	87
54	Direct conversion of carbohydrates to γ-valerolactone facilitated by a solvent effect. Green Chemistry, 2015, 17, 3084-3089.	9.0	49

#	Article	IF	CITATIONS
55	Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni–WO ₃ /SBA-15 catalysts. RSC Advances, 2015, 5, 90904-90912.	3.6	27
56	Graphene-Modified Ru Nanocatalyst for Low-Temperature Hydrogenation of Carbonyl Groups. ACS Catalysis, 2015, 5, 7379-7384.	11.2	113
57	Ni Nanoparticles Inlaid Nickel Phyllosilicate as a Metal–Acid Bifunctional Catalyst for Low-Temperature Hydrogenolysis Reactions. ACS Catalysis, 2015, 5, 5914-5920.	11.2	157
58	Waterâ€Promoted Hydrogenation of Levulinic Acid to γâ€Valerolactone on Supported Ruthenium Catalyst. ChemCatChem, 2015, 7, 508-512.	3.7	117
59	Construction of Cu/ZrO2/Al2O3 composites for ethanol synthesis: Synergies of ternary sites for cascade reaction. Applied Catalysis B: Environmental, 2015, 166-167, 551-559.	20.2	85
60	Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: The synergistic effect of metal and acid sites. Journal of Molecular Catalysis A, 2015, 398, 140-148.	4.8	140
61	A highly efficient and robust Cu/SiO ₂ catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science and Technology, 2015, 5, 1169-1180.	4.1	124
62	Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst. RSC Advances, 2014, 4, 60467-60472.	3.6	104
63	Graphene Oxide Catalyzed Dehydration of Fructose into 5â€Hydroxymethylfurfural with Isopropanol as Cosolvent. ChemCatChem, 2014, 6, 728-732.	3.7	88
64	SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2014, 158-159, 391-399.	20.2	122
65	Cu Nanoparticles Inlaid Mesoporous Al ₂ O ₃ As a High-Performance Bifunctional Catalyst for Ethanol Synthesis via Dimethyl Oxalate Hydrogenation. ACS Catalysis, 2014, 4, 3612-3620.	11.2	151
66	The Rise of Calcination Temperature Enhances the Performance of Cu Catalysts: Contributions of Support. ACS Catalysis, 2014, 4, 3675-3681.	11.2	79
67	Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chemistry, 2013, 15, 2379.	9.0	150
68	Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. Journal of Catalysis, 2013, 306, 155-163.	6.2	143
69	Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support. Applied Catalysis A: General, 2013, 468, 296-304.	4.3	119
70	Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresource Technology, 2013, 130, 45-51.	9.6	132
71	Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 2013, 303, 70-79.	6.2	215
72	Alkaline metals modified Pt–H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2013, 140-141, 60-67.	20.2	97

#	Article	IF	CITATIONS
73	Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone. Applied Catalysis A: General, 2012, 443-444, 191-201.	4.3	66
74	Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase. Green Chemistry, 2012, 14, 3402.	9.0	117
75	One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts. Green Chemistry, 2012, 14, 2607.	9.0	106
76	Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411-412, 95-104.	4.3	129
77	Catalytic degradation of oxygenates in Fischer–Tropsch aqueous phase effluents to fuel gas via hydrodeoxygenation over Ru/AC catalyst. Journal of Chemical Technology and Biotechnology, 2012, 87, 112-122.	3.2	21
78	Catalytic degradation of aqueous Fischer–Tropsch effluents to fuel gas over oxideâ€supported Ru catalysts and hydrothermal stability of catalysts. Journal of Chemical Technology and Biotechnology, 2012, 87, 1089-1097.	3.2	14
79	Aqueous-Phase Hydrogenolysis of Glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2. Catalysis Letters, 2012, 142, 267-274.	2.6	79
80	Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A, 2011, 351, 217-227.	4.8	130
81	Vapour phase hydrogenolysis of biomass-derived diethyl succinate to tetrahydrofuran over CuOZnO/solid acid bifunctional catalysts. Journal of Chemical Technology and Biotechnology, 2011, 86, 231-237.	3.2	18
82	Study on the reaction pathway in the vapor-phase hydrogenation of biomass-derived diethyl succinate over CuO/ZnO catalyst. Catalysis Communications, 2010, 11, 1120-1124.	3.3	21
83	Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase. Catalysis Letters, 2009, 131, 312-320.	2.6	121
84	Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation. Fuel Processing Technology, 2009, 90, 988-993.	7.2	163
85	One Pot Synthesis of Methyl N-Phenyl Carbamate from Aniline, Urea and Methanol. Catalysis Letters, 2008, 126, 419-425.	2.6	15