Michele Scaraggi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theory of adhesion: Role of surface roughness. Journal of Chemical Physics, 2014, 141, 124701.	1.2	162
2	Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Science Advances, 2017, 3, e1603288.	4.7	127
3	High Lubricity Meets Load Capacity: Cartilage Mimicking Bilayer Structure by Brushing Up Stiff Hydrogels from Subsurface. Advanced Functional Materials, 2020, 30, 2004062.	7.8	118
4	Nanoporous Substrateâ€Infiltrated Hydrogels: a Bioinspired Regenerable Surface for High Load Bearing and Tunable Friction. Advanced Functional Materials, 2015, 25, 7366-7374.	7.8	87
5	Friction Properties of Lubricated Laser-MicroTextured-Surfaces: An Experimental Study from Boundary- to Hydrodynamic-Lubrication. Tribology Letters, 2013, 49, 117-125.	1.2	86
6	Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. European Physical Journal E, 2009, 30, 65-74.	0.7	79
7	Minimize friction of lubricated laser-microtextured-surfaces by tuning microholes depth. Tribology International, 2014, 75, 123-127.	3.0	71
8	Contact mechanics between the human finger and a touchscreen under electroadhesion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12668-12673.	3.3	64
9	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory. Soft Matter, 2011, 7, 10395.	1.2	61
10	On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. Journal of Physics Condensed Matter, 2009, 21, 185002.	0.7	53
11	Theory of viscoelastic lubrication. Tribology International, 2014, 72, 118-130.	3.0	53
12	Friction and universal contact area law for randomly rough viscoelastic contacts. Journal of Physics Condensed Matter, 2015, 27, 105102.	0.7	44
13	Experimental Evidence of Micro-EHL Lubrication in Rough Soft Contacts. Tribology Letters, 2011, 43, 169-174.	1.2	40
14	Lubricated sliding dynamics: Flow factors and Stribeck curve. European Physical Journal E, 2011, 34, 113.	0.7	37
15	Textured Surface Hydrodynamic Lubrication: Discussion. Tribology Letters, 2012, 48, 375-391.	1.2	33
16	Elastic contact of rough surfaces: A simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear, 2013, 297, 811-817.	1.5	32
17	Effect of fine-scale roughness on the tractions between contacting bodies. Tribology International, 2017, 111, 52-56.	3.0	31
18	Lubrication in soft rough contacts: A novel homogenized approach. Part II - Discussion. Soft Matter, 2011, 7, 10407.	1.2	29

2

MICHELE SCARAGGI

#	Article	IF	CITATIONS
19	General contact mechanics theory for randomly rough surfaces with application to rubber friction. Journal of Chemical Physics, 2015, 143, 224111.	1.2	28
20	Influence of anisotropic surface roughness on lubricated rubber friction: Extended theory and an application to hydraulic seals. Wear, 2018, 410-411, 43-62.	1.5	25
21	Time-Dependent Fluid Squeeze-Out Between Soft Elastic Solids with Randomly Rough Surfaces. Tribology Letters, 2012, 47, 409-416.	1.2	24
22	Lubrication of textured surfaces: A general theory for flow and shear stress factors. Physical Review E, 2012, 86, 026314.	0.8	24
23	Optimal Textures for Increasing the Load Support in a Thrust Bearing Pad Geometry. Tribology Letters, 2014, 53, 127-143.	1.2	23
24	Nanohydrogel Brushes for Switchable Underwater Adhesion. Journal of Physical Chemistry C, 2017, 121, 8452-8463.	1.5	22
25	Bioinspired 3D Printed Locomotion Devices Based on Anisotropic Friction. Small, 2019, 15, e1802931.	5.2	21
26	Dependency of Rubber Friction on Normal Force or Load: Theory and Experiment. Tire Science and Technology, 2017, 45, 25-54.	0.3	21
27	Rolling Friction: Comparison of Analytical Theory with Exact Numerical Results. Tribology Letters, 2014, 55, 15-21.	1.2	20
28	Contact electrification and the work of adhesion. Europhysics Letters, 2013, 103, 36003.	0.7	15
29	Rough contact mechanics for viscoelastic graded materials: The role of small-scale wavelengths on rubber friction. International Journal of Solids and Structures, 2017, 125, 276-296.	1.3	13
30	Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction. Tribology Letters, 2018, 66, 1.	1.2	13
31	Non-Uniform Laser Surface Texturing of an Un-Tapered Square Pad for Tribological Applications. Lubricants, 2017, 5, 41.	1.2	12
32	Numerical and Experimental Investigation on O-Ring-Seals in Dynamic Applications. International Journal of Fluid Power, 2009, 10, 51-59.	0.7	11
33	EHL squeeze at pin–pulley interface in CVTs: Influence of lubricant rheology. Tribology International, 2009, 42, 862-868.	3.0	11
34	A Two-Scale Approach for Lubricated Soft-Contact Modeling: An Application to Lip-Seal Geometry. Advances in Tribology, 2012, 2012, 1-12.	2.1	11
35	Partial surface texturing: A mechanism for local flow reconditioning in lubricated contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 493-504.	1.0	10
36	Varying the Geometry of Laser Surface Microtexturing to Enhance the Frictional Behavior of Lubricated Steel Surfaces. Physics Procedia, 2013, 41, 677-682.	1.2	9

MICHELE SCARAGGI

#	Article	IF	CITATIONS
37	The influence of geometrical and rheological non-linearity on the calculation of rubber friction. Tribology International, 2016, 101, 402-413.	3.0	9
38	The effect of finite roughness size and bulk thickness on the prediction of rubber friction and contact mechanics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 1398-1409.	1.1	8
39	Lubricated sliding friction: Role of interfacial fluid slip and surface roughness. European Physical Journal E, 2020, 43, 9.	0.7	8
40	Transition from elastohydrodynamic to mixed lubrication in highly loaded squeeze contacts. Journal of the Mechanics and Physics of Solids, 2010, 58, 1361-1373.	2.3	7
41	The Lubrication Regime at Pin-Pulley Interface in Chain CVTs. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	1.7	6
42	The friction of sliding wet textured surfaces: the Bruggeman effective medium approach revisited. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140739.	1.0	5
43	Laser surface micro-texturing to enhance the frictional behavior of lubricated steel. Proceedings of SPIE, 2014, , .	0.8	4
44	Elastohydrodynamics for Soft Solids with Surface Roughness: Transient Effects. Tribology Letters, 2017, 65, 1.	1.2	4
45	Finite element modelling of bone tissue scaffolds. , 2014, , 485-511.		3
46	Anisotropic Friction: Bioinspired 3D Printed Locomotion Devices Based on Anisotropic Friction (Small) Tj ETQq0 C) 0_rgBT /C 5 .2	Dverlock 10 T
47	Scaling behaviour of braided active channels: a Taylor's power law approach. European Physical Journal Plus, 2022, 137, .	1.2	3
48	Influence of Anisotropic Surfaces on the Friction Behaviour of Hydraulic Seals. , 2016, , .		2

49	Fundamentals of Adhesion. , 2016, , .		1	
50	Nematic liquid crystals in a spatially step-wise magnetic field. Physical Review E, 2016, 93, 012701.	0.8	1	
51	A Hybrid Multiscale Approach for Rubber Contact. Frontiers in Mechanical Engineering, 2022, 8, .	0.8	1	