Xuan Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1899715/xuan-wu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	2,12 O citations	23	39
papers		h-index	g-index
39	3,032 ext. citations	9	5.8
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
35	Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation <i>Water Research</i> , 2022 , 212, 118099	12.5	16
34	A biomimetic interfacial solar evaporator for heavy metal soil remediation. <i>Chemical Engineering Journal</i> , 2022 , 435, 134793	14.7	3
33	A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss. <i>Solar Rrl</i> , 2021 , 5, 2100053	7.1	37
32	Dual-Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. <i>Advanced Functional Materials</i> , 2021 , 31, 2102618	15.6	69
31	Same materials, bigger output: A reversibly transformable 2DBD photothermal evaporator for highly efficient solar steam generation. <i>Nano Energy</i> , 2021 , 79, 105477	17.1	87
30	All-Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator. <i>Advanced Science</i> , 2021 , 8, 2002501	13.6	97
29	Enhancing solar steam generation using a highly thermally conductive evaporator support. <i>Science Bulletin</i> , 2021 , 66, 2479-2479	10.6	41
28	Stackable nickellobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11665-11673	13	91
27	Graphene and Rice-Straw-Fiber-Based 3D Photothermal Aerogels for Highly Efficient Solar Evaporation. <i>ACS Applied Materials & Evaporation (Nature of Applied Materials & Applied & Applied Materials & Applied & Applied</i>	9.5	146
26	Boosting solar steam generation by structure enhanced energy management. <i>Science Bulletin</i> , 2020 , 65, 1380-1388	10.6	109
25	Light-Sheet Skew Ray-Enhanced Localized Surface Plasmon Resonance-Based Chemical Sensing. <i>ACS Sensors</i> , 2020 , 5, 127-132	9.2	1
24	A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24703-24709	13	30
23	A cobalt oxide@polydopamine-reduced graphene oxide-based 3D photothermal evaporator for highly efficient solar steam generation. <i>Tungsten</i> , 2020 , 2, 423-432	4.6	14
22	Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. <i>Nano Energy</i> , 2020 , 78, 105269	17.1	101
21	A photothermal reservoir for highly efficient solar steam generation without bulk water. <i>Science Bulletin</i> , 2019 , 64, 1625-1633	10.6	114
20	Optical hygrometer using light-sheet skew-ray probed multimode fiber with polyelectrolyte coating. <i>Sensors and Actuators B: Chemical</i> , 2019 , 296, 126685	8.5	4
19	Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. <i>Materials Today Energy</i> , 2019 , 12, 277-296	7	131

18	Light-Sheet Skew-Ray Enhanced Pump-Absorption for Sensing. <i>Journal of Lightwave Technology</i> , 2019 , 37, 2140-2146	4	3
17	A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. <i>Nano Energy</i> , 2019 , 56, 708-715	17.1	210
16	Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12267-12274	13	125
15	Recent Progress in Advanced Humidity Sensors. <i>Journal of Physics: Conference Series</i> , 2018 , 1065, 2520	0&.3	
14	Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating. <i>Scientific Reports</i> , 2017 , 7, 41895	4.9	4
13	A Plant-Transpiration-Process-Inspired Strategy for Highly Efficient Solar Evaporation. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700046	5.9	138
12	Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh. <i>Green Energy and Environment</i> , 2017 , 2, 387-392	5.7	5
11	Ultra-fast Hygrometer based on U-shaped Optical Microfiber with Nanoporous Polyelectrolyte Coating. <i>Scientific Reports</i> , 2017 , 7, 7943	4.9	23
10	Hierarchical CuO Colloidosomes and Their Structure Enhanced Photothermal Catalytic Activity. Journal of Physical Chemistry C, 2016 , 120, 12666-12672	3.8	47
9	Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances. <i>Nanoscale</i> , 2015 , 7, 9752-9	7.7	24
8	Conversion of CuO nanoplates into porous hybrid Cu2O/polypyrrole nanoflakes through a pyrrole-induced reductive transformation reaction. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1120-7	4.5	23
7	Nanoporous single-crystal-like Cd(x)Zn(1-x)S nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 897-900	16.4	204
6	Nanoporous Single-Crystal-Like CdxZn1\(\mathbb{B}\)S Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic\(\mathbb{D}\)rganic Hybrid ZnS\(\mathbb{A}\)mine with Cadmium Ions. <i>Angewandte Chemie</i> , 2012 , 124, 921-924	3.6	41
5	Titelbild: Nanoporous Single-Crystal-Like CdxZn1\(\mathbb{R}\)S Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic\(\mathbb{D}\)rganic Hybrid ZnS\(\mathbb{A}\)mine with Cadmium Ions (Angew. Chem. 4/2012). Angewandte Chemie, 2012, 124, 849-849	3.6	
4	Synthesis of Hollow CdxZn1\(\mathbb{I}\)Se Nanoframes through the Selective Cation Exchange of Inorganic\(\mathbb{D}\)rganic Hybrid ZnSe\(\mathbb{A}\)mine Nanoflakes with Cadmium Ions. <i>Angewandte Chemie</i> , 2012 , 124, 3265-3269	3.6	20
3	Synthesis of hollow Cd(x)Zn(1-x) Se nanoframes through the selective cation exchange of inorganic-organic hybrid ZnSe-amine nanoflakes with cadmium ions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3211-5	16.4	102
2	Composition-tunable Pt-Co alloy nanoparticle networks: facile room-temperature synthesis and supportless electrocatalytic applications. <i>ChemPhysChem</i> , 2012 , 13, 2601-9	3.2	39
1	Interfacial solar evaporation driven lead removal from a contaminated soil. <i>EcoMat</i> ,e12140	9.4	6