
Yanjie Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899712/publications.pdf Version: 2024-02-01

VANUE SU

#	Article	IF	CITATIONS
1	All-Carbon van der Waals Heterojunction Photodetectors. Springer Series in Materials Science, 2022, , 131-147.	0.6	0
2	Carbon-Based Heterojunction Broadband Photodetectors. Springer Series in Materials Science, 2022, , 91-129.	0.6	0
3	Introduction of Carbon Nanostructures. Springer Series in Materials Science, 2022, , 1-26.	0.6	0
4	Carbon Nanotube/semiconductor van der Waals Heterojunction Solar Cells. Springer Series in Materials Science, 2022, , 149-170.	0.6	0
5	Characterizations of Carbon Nanotubes and Graphene. Springer Series in Materials Science, 2022, , 65-90.	0.6	0
6	Controlled Growths of Carbon Nanotubes and Graphene. Springer Series in Materials Science, 2022, , 41-64.	0.6	0
7	Fast and recoverable NO ₂ detection achieved by assembling ZnO on Ti ₃ C ₂ T _{<i>x</i>} MXene nanosheets under UV illumination at room temperature. Nanoscale, 2022, 14, 3441-3451.	5.6	65
8	High-Performance Wearable Sensor Inspired by the Neuron Conduction Mechanism through Gold-Induced Sulfur Vacancies. ACS Sensors, 2022, 7, 816-826.	7.8	34
9	Laser-Induced MoO <i>_x</i> /Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir, 2021, 37, 1596-1604.	3.5	8
10	Enhancing room-temperature NO ₂ gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material. RSC Advances, 2021, 11, 5618-5628.	3.6	22
11	Hierarchical WS ₂ –WO ₃ Nanohybrids with P–N Heterojunctions for NO ₂ Detection. ACS Applied Nano Materials, 2021, 4, 1626-1634.	5.0	56
12	Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27270-27277.	8.0	27
13	Lithium titanate nanoplates embedded with graphene quantum dots as electrode materials for high-rate lithium-ion batteries. Nanotechnology, 2021, 32, 505403.	2.6	4
14	Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Advances, 2021, 11, 14805-14813.	3.6	24
15	Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.	5.5	108
16	Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sensors and Actuators B: Chemical, 2020, 304, 127347.	7.8	87
17	Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127393.	7.8	87
18	Highly sensitive NO ₂ gas sensors based on hexagonal SnS ₂ nanoplates operating at room temperature. Nanotechnology, 2020, 31, 075501.	2.6	30

Yanjie Su

#	Article	IF	CITATIONS
19	Laser-induced MnO/Mn3O4/N-doped-graphene hybrid as binder-free anodes for lithium ion batteries. Chemical Engineering Journal, 2020, 385, 123720.	12.7	56
20	Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sensors and Actuators B: Chemical, 2020, 306, 127546.	7.8	43
21	Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sensors and Actuators B: Chemical, 2020, 306, 127536.	7.8	75
22	Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors. Chemical Engineering Journal, 2020, 392, 123692.	12.7	48
23	Self-Powered Broadband Photodetector Based on Single-Walled Carbon Nanotube/GaAs Heterojunctions. ACS Sustainable Chemistry and Engineering, 2020, 8, 15532-15539.	6.7	26
24	A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science, 2020, 567, 213-223.	9.4	77
25	Inkjet-Printed Ultrathin MoS ₂ -Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 39444-39454.	8.0	45
26	Enhancing room-temperature NO2 detection of cobalt phthalocyanine based gas sensor at an ultralow laser exposure. Physical Chemistry Chemical Physics, 2020, 22, 18499-18506.	2.8	14
27	Multichannel Room-Temperature Gas Sensors Based on Magnetic-Field-Aligned 3D Fe ₃ O ₄ @SiO ₂ @Reduced Graphene Oxide Spheres. ACS Applied Materials & Interfaces, 2020, 12, 37418-37426.	8.0	29
28	Highly Sensitive Room-Temperature NO ₂ Gas Sensors Based on Three-Dimensional Multiwalled Carbon Nanotube Networks on SiO ₂ Nanospheres. ACS Sustainable Chemistry and Engineering, 2020, 8, 13915-13923.	6.7	34
29	A Light-Weighted CNN Model for Wafer Structural Defect Detection. IEEE Access, 2020, 8, 24006-24018.	4.2	44
30	Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. Journal of Materials Chemistry C, 2020, 8, 3386-3394.	5.5	30
31	Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology, 2020, 31, 335102.	2.6	38
32	Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 116-124.	5.5	47
33	Graphene van der Waals heterostructures for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 11056-11067.	5.5	41
34	Self-templated growth of CuInS2 nanosheet arrays for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 809, 151794.	5.5	13
35	3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting. Nanoscale, 2019, 11, 18071-18080.	5.6	5
36	Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Advances, 2019, 9, .	1.3	33

YANJIE SU

#	Article	IF	CITATIONS
37	Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Applied Surface Science, 2019, 493, 613-619.	6.1	104
38	Two-dimensional MoSe ₂ nanosheets via liquid-phase exfoliation for high-performance room temperature NO ₂ gas sensors. Nanotechnology, 2019, 30, 445503.	2.6	63
39	Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 46044-46053.	8.0	70
40	Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sensors and Actuators B: Chemical, 2019, 300, 127013.	7.8	93
41	Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sensors and Actuators B: Chemical, 2019, 296, 126666.	7.8	98
42	Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sensors and Actuators B: Chemical, 2019, 296, 126642.	7.8	74
43	Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sensors and Actuators B: Chemical, 2019, 288, 699-706.	7.8	66
44	Hierarchically ZnIn ₂ S ₄ nanosheet-constructed microwire arrays: template-free synthesis and excellent photocatalytic performances. Nanoscale, 2018, 10, 4735-4744.	5.6	61
45	Enhancing the photosensitivity of C60 nanorod visible photodetectors by coupling with Cu2O nanocubes. Journal of Materials Chemistry C, 2018, 6, 1715-1721.	5.5	9
46	Linear humidity response of carbon dot-modified molybdenum disulfide. Physical Chemistry Chemical Physics, 2018, 20, 4083-4091.	2.8	25
47	Controlled growth of vertically aligned ultrathin In ₂ S ₃ nanosheet arrays for photoelectrochemical water splitting. Nanoscale, 2018, 10, 1153-1161.	5.6	54
48	Highly Sensitive Broadband Singleâ€Walled Carbon Nanotube Photodetectors Enhanced by Separated Graphene Nanosheets. Advanced Optical Materials, 2018, 6, 1800791.	7.3	29
49	Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sensors and Actuators B: Chemical, 2018, 270, 119-129.	7.8	82
50	An ultrasensitive NO ₂ gas sensor based on a hierarchical Cu ₂ O/CuO mesocrystal nanoflower. Journal of Materials Chemistry A, 2018, 6, 17120-17131.	10.3	122
51	Design of Hetero-Nanostructures on MoS ₂ Nanosheets To Boost NO ₂ Room-Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22640-22649.	8.0	199
52	Enhanced NO ₂ sensing performance of reduced graphene oxide by in situ anchoring carbon dots. Journal of Materials Chemistry C, 2017, 5, 6862-6871.	5.5	93
53	Two-dimensional NiO nanosheets with enhanced room temperature NO ₂ sensing performance via Al doping. Physical Chemistry Chemical Physics, 2017, 19, 19043-19049.	2.8	86
54	Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties. Nanoscale Research Letters, 2013, 8, 32.	5.7	78

Yanjie Su

#	Article	IF	CITATIONS
55	Double-nucleation hydrothermal growth of dense and large-scale ZnO nanorod arrays with high aspect ratio on zinc substrate for stable photocatalytic property. Materials Letters, 2013, 107, 251-254.	2.6	11
56	Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Materials Research Bulletin, 2013, 48, 3232-3235.	5.2	27
57	Facile one-pot synthesis and band gap calculations of ZnxCd1â^'xS nanorods. Materials Letters, 2013, 102-103, 94-97.	2.6	20
58	Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers. Materials Letters, 2013, 93, 161-164.	2.6	63
59	A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2013, 47, 86-91.	10.1	91
60	Controlled Synthesis of Different Metal Oxide Nanostructures by Direct Current Arc Discharge. Journal of Nanoscience and Nanotechnology, 2013, 13, 1078-1081.	0.9	4
61	Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1548-1551.	2.7	18
62	Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst. Journal of Crystal Growth, 2012, 338, 6-11.	1.5	13
63	An Accurate In-Fixture Measurement Method for AlN Film Bulk Acoustic Resonators. , 2012, , .		0
64	Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes. Nanoscale, 2012, 4, 1717.	5.6	17
65	One-pot synthesis of ultranarrow single crystal ZnSe nanowires. Materials Letters, 2012, 67, 269-272.	2.6	18
66	Synthesis of ternary PbxSn1â^'xS nanocrystals with tunable band gap. CrystEngComm, 2011, 13, 6628.	2.6	14
67	Tunable band gap Cu2ZnSnS4xSe4(1â^x) nanocrystals: experimental and first-principles calculations. CrystEngComm, 2011, 13, 2222.	2.6	75
68	Vapor-phase chemical synthesis of magnesium oxide nanowires by DC arc discharge. Journal of Nanoparticle Research, 2011, 13, 3229-3233.	1.9	3
69	A one-dimensional extremely covalent material: monatomic carbon linear chain. Nanoscale Research Letters, 2011, 6, 577.	5.7	24
70	Highly compressible carbon nanowires synthesized by coating single-walled carbon nanotubes. Carbon, 2011, 49, 3579-3584.	10.3	9