Jan Suda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899702/publications.pdf

Version: 2024-02-01

71102 64796 7,351 97 41 79 citations h-index g-index papers 117 117 117 6472 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Morphological and environmental differentiation as prezygotic reproductive barriers between parapatric and allopatric <i>Campanula rotundifolia</i> agg. cytotypes. Annals of Botany, 2023, 131, 71-86.	2.9	2
2	Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecology, 2020, 45, 100914.	1.6	10
3	Associations between genomic ancestry, genome size and capitula morphology in the invasive meadow knapweed hybrid complex (Centaurea Á— moncktonii) in eastern North America. AoB PLANTS, 2019, 11, plz055.	2.3	5
4	Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant lifeâ€history traits and climatic conditions. New Phytologist, 2019, 224, 1642-1656.	7.3	63
5	Climatic conditions and human activities shape diploid–tetraploid coexistence at different spatial scales in the common weed <i>Tripleurospermum inodorum</i> (Asteraceae). Journal of Biogeography, 2019, 46, 1355-1366.	3.0	23
6	Nuclear Genome Size in Contrast to Sex Chromosome Number Variability in the Human Bed Bug, Cimex lectularius (Heteroptera: Cimicidae). Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 746-756.	1.5	8
7	Ploidyâ€altered phenotype interacts with local environment and may enhance polyploid establishment in <i>Knautia serpentinicola</i> (Caprifoliaceae). New Phytologist, 2019, 221, 1117-1127.	7.3	24
8	Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology, 2018, 99, 79-90.	3.2	54
9	Sympatric diploid and tetraploid cytotypes of <i>Centaurea stoebe</i> s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. American Journal of Botany, 2018, 105, 1995-2007.	1.7	9
10	Does higher ploidy level increase the risk of invasion? A case study with two geo-cytotypes of Solidago gigantea Aiton (Asteraceae). Journal of Plant Ecology, 2018, 11, 317-327.	2.3	25
11	Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Annals of Botany, 2017, 120, 341-349.	2.9	67
12	Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Annals of Botany, 2017, 120, 303-315.	2.9	59
13	Patterns, causes and consequences of genome size variation in Restionaceae of the Cape flora. Botanical Journal of the Linnean Society, 2017, 183, 515-531.	1.6	5
14	Mixed-Ploidy Species: Progress and Opportunities in Polyploid Research. Trends in Plant Science, 2017, 22, 1041-1055.	8.8	165
15	A New Species of Cleisostoma (Orchidaceae) from the Hon Ba Nature Reserve in Vietnam: A Multidisciplinary Assessment. PLoS ONE, 2016, 11, e0150631.	2.5	8
16	Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African <i>Oxalis</i> (Oxalidaceae). Molecular Ecology Resources, 2016, 16, 1124-1135.	4.8	101
17	Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores?. Biological Invasions, 2016, 18, 2531-2549.	2.4	44
18	The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biology and Evolution, 2016, 8, 1996-2005.	2.5	19

#	Article	IF	Citations
19	Speciesâ€rich and polyploidâ€poor: Insights into the evolutionary role of wholeâ€genome duplication from the Cape flora biodiversity hotspot. American Journal of Botany, 2016, 103, 1336-1347.	1.7	28
20	Challenges of flowâ€cytometric estimation of nuclear genome size in orchids, a plant group with both wholeâ€genome and progressively partial endoreplication. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 958-966.	1.5	51
21	Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae). PLoS ONE, 2015, 10, e0133748.	2.5	24
22	Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of <i>Senecio carniolicus</i> (syn. <i>Jacobaea carniolica</i> ,) Tj ETQq0 0 C) rgBII9Ove	rlo ck 10 Tf 50
23	Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Annals of Botany, 2015, 117, mcv176.	2.9	26
24	Evaluating the relationship between diploid and tetraploid <i>Vaccinium oxycoccos</i> (Ericaceae) in eastern Canada. Botany, 2015, 93, 623-636.	1.0	16
25	The origin of unique diversity in deglaciated areas: traces of <scp>P</scp> leistocene processes in northâ€ <scp>E</scp> uropean endemics from the <i>Galium pusillum</i> polyploid complex (<scp>R</scp> ubiaceae). Molecular Ecology, 2015, 24, 1311-1334.	3.9	13
26	Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Molecular Ecology, 2015, 24, 1831-1843.	3.9	31
27	The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007.	7.3	99
28	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	3.2	166
29	Genome size and phenotypic variation of Nymphaea (Nymphaeaceae) species from Eastern Europe and temperate Asia. Acta Societatis Botanicorum Poloniae, 2015, 84, 277-286.	0.8	3
30	Phylogenetic signal in growth and reproductive traits and in their plasticity: the <i>Descurainia</i> radiation in the Canary Islands. Botanical Journal of the Linnean Society, 2014, 174, 384-398.	1.6	6
31	Morphological <i>versus</i> genetic diversity of <i><scp>V</scp>iola reichenbachiana</i> and <i><scp>V</scp>.Âriviniana</i> (sect. <i><scp>V</scp>iola</i> , <scp> V</scp> iolaceae) from soils differing in heavy metal content. Plant Biology, 2014, 16, 924-934.	3.8	20
32	Intraspecific ploidy variation: A hidden, minor player in plant–soil–mycorrhizal fungi interactions. American Journal of Botany, 2014, 101, 26-33.	1.7	17
33	Nonadaptive processes governing early stages of polyploid evolution: Insights from a primary contact zone of relict serpentine <i>Knautia arvensis</i> (Caprifoliaceae). American Journal of Botany, 2014, 101, 935-945.	1.7	32
34	Ploidyâ€specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the ⟨i⟩⟨scp⟩G⟨ scp⟩ymnadenia conopsea⟨ i⟩ group (⟨scp⟩O⟨ scp⟩rchidaceae). New Phytologist, 2013, 199, 1022-1033.	7.3	92
35	Diversity and endemism in deglaciated areas: ploidy, relative genome size and niche differentiation in the Galium pusillum complex (Rubiaceae) in Northern and Central Europe. Annals of Botany, 2013, 111, 1095-1108.	2.9	30
36	The spatio-ecological segregation of different cytotypes of Oxalis obtusa (Oxalidaceae) in contact zones. South African Journal of Botany, 2013, 88, 62-68.	2.5	8

#	Article	IF	CITATIONS
37	The Incidence of Polyploidy in Natural Plant Populations: Major Patterns and Evolutionary Processes. , 2013, , 255-276.		191
38	High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany, 2013, 111, 641-649.	2.9	51
39	Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Botanical Journal of the Linnean Society, 2013, 172, 95-105.	1.6	27
40	Cytogeography of Oxalis pes-caprae in its native range: where are the pentaploids?. Biological Invasions, 2013, 15, 1189-1194.	2.4	14
41	Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122387.	2.6	30
42	Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS, 2013, 5, plt042-plt042.	2.3	87
43	Two new species of Oxalis (Oxalidaceae) from the Greater Cape Floristic Region. Phytotaxa, 2013, 124, 13.	0.3	6
44	Parental Ploidy Strongly Affects Offspring Fitness in Heteroploid Crosses among Three Cytotypes of Autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE, 2013, 8, e78959.	2.5	42
45	Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Annals of Botany, 2012, 110, 1357-1367.	2.9	37
46	The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 2012, 109, 19-45.	2.9	707
47	Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany, 2012, 110, 977-986.	2.9	39
48	Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae). PLoS ONE, 2012, 7, e39988.	2.5	52
49	Glycerol-treated nuclear suspensions—an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Research, 2012, 20, 303-315.	2.2	21
50	Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology, 2012, 80, 216-235.	2.7	119
51	The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biology and Biochemistry, 2012, 44, 56-64.	8.8	64
52	Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (<i>Senecio carniolicus</i> , Asteraceae). Molecular Ecology, 2012, 21, 1255-1270.	3.9	44
53	Invasiveness in introduced Australian acacias: the role of species traits and genome size. Diversity and Distributions, 2011, 17, 884-897.	4.1	64
54	Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant and Soil, 2011, 345, 325-338.	3.7	21

#	Article	IF	CITATIONS
55	Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant) Tj ETQq1 1	0.784314	rgBT /Overlo
56	Apomixis is not prevalent in subnival to nival plants of the European Alps. Annals of Botany, 2011, 108, 381-390.	2.9	32
57	Molecular systematics and ecology of invasive Kangaroo Paws in South Africa: management implications for a horticulturally important genus. Biological Invasions, 2010, 12, 3989-4002.	2.4	22
58	Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis. BMC Genomics, 2010, 11, 111.	2.8	30
59	The quest for suitable reference standards in genome size research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 717-720.	1.5	40
60	Ploidyâ€specific interactions of three host plants with arbuscular mycorrhizal fungi: Does genome copy number matter?. American Journal of Botany, 2010, 97, 1798-1807.	1.7	20
61	Species boundaries and frequency of hybridization in the <i>Dryopteris carthusiana</i> (Dryopteridaceae) complex: A taxonomic puzzle resolved using genome size data. American Journal of Botany, 2010, 97, 1208-1219.	1.7	31
62	Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Annals of Botany, 2010, 106, 967-977.	2.9	109
63	Genome Size. Journal of Botany, 2010, 2010, 1-4.	1.2	14
64	Karyological features of wild and cultivated forms of myrtle (Myrtus communis, Myrtaceae). Genetics and Molecular Research, 2010, 9, 429-433.	0.2	3
65	Genome size diversity in orchids: consequences and evolution. Annals of Botany, 2009, 104, 469-481.	2.9	156
66	Complex pattern of genome size variation in a polymorphic member of the Asteraceae. Journal of Biogeography, 2009, 36, 372-384.	3.0	39
67	Reciprocal Pleistocene origin and postglacial range formation of an allopolyploid and its sympatric ancestors (Androsace adfinis group, Primulaceae). Molecular Phylogenetics and Evolution, 2009, 50, 74-83.	2.7	45
68	Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Annals of Botany, 2009, 103, 963-974.	2.9	125
69	Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia, 2009, 81, 309-319.	2.8	39
70	ORIGINAL ARTICLE: Colonization and diversification in the African †sky islands†by Eurasian ⟨i⟩Lychnis⟨ i⟩ L. (Caryophyllaceae). Journal of Biogeography, 2008, 35, 1016-1029.	3.0	55
71	Plant flow cytometry—Far beyond the stone age. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 579-580.	1.5	10
72	Complex distribution patterns of diâ€, tetraâ€, and hexaploid cytotypes in the European high mountain plant <i>Senecio carniolicus </i> (Asteraceae). American Journal of Botany, 2007, 94, 1391-1401.	1.7	111

#	Article	IF	CITATIONS
73	Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae). Annals of Botany, 2007, 100, 505-526.	2.9	135
74	Genome Size Variation and Species Relationships in Hieracium Sub-genus Pilosella (Asteraceae) as Inferred by Flow Cytometry. Annals of Botany, 2007, 100, 1323-1335.	2.9	98
75	Applications of Flow Cytometry to Evolutionary and Population Biology. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 847-876.	8.3	164
76	Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution, 2007, 42, 92-103.	2.7	174
77	Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2007, 2, 2233-2244.	12.0	1,219
78	Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Molecular Ecology, 2007, 16, 3902-3925.	3.9	243
79	DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. Journal of Biogeography, 2007, 35, 070901070439003-???.	3.0	14
80	Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research, 2007, 120, 721-725.	2.4	69
81	Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow Cytometry. Current Protocols in Cytometry, 2006, 38, Unit7.30.	3.7	47
82	Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon, 2006, 55, 447-450.	0.7	166
83	Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands. Plant Ecology, 2006, 186, 97-108.	1.6	22
84	A modified method of flow cytometric seed screen simplifies the quantification of progeny classes with different ploidy levels. Biologia Plantarum, 2006, 50, 457-460.	1.9	22
85	Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 273-280.	1.5	135
86	The ghost of hybridization past: niche pre-emption is not the only explanation of apparent monophyly in island endemics Journal of Ecology, 2005, 93, 572-575.	4.0	40
87	Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Systematics and Evolution, 2005, 252, 215-238.	0.9	67
88	Genome size discriminates between closely related taxaElytrigia repens andE. intermedia (Poaceae:) Tj ETQq0 0	0 rgBJ /O\	verlock 10 Tf 5
89	Variation in Lamium subg. Galeobdolon (Lamiaceae) ? insights from ploidy levels, morphology and isozymes. Plant Systematics and Evolution, 2004, 244, 219-244.	0.9	17
90	Cytotype distribution inEmpetrum (Ericaceae) at various spatial scales in the Czech Republic. Folia Geobotanica, 2004, 39, 161-171.	0.9	17

#	Article	IF	CITATIONS
91	Genome Size Variation in Central European Species of Cirsium (Compositae) and their Natural Hybrids. Annals of Botany, 2004, 94, 353-363.	2.9	92
92	(1582) Proposal to conserve the name Inula verbascifolia (Willd.) Hausskn. against I. verbascifolia Poir. (Asteraceae) and with a conserved type. Taxon, 2003, 52, 358-359.	0.7	2
93	Genetic variation within the endangered species Aldrovanda vesiculosa (Droseraceae) as revealed by RAPD analysis. Aquatic Botany, 2003, 75, 159-172.	1.6	23
94	Variation in DNAâ€ploidy Levels of Reynoutria Taxa in the Czech Republic. Annals of Botany, 2003, 92, 265-272.	2.9	63
95	Nuclear DNA Amounts in Macaronesian Angiosperms. Annals of Botany, 2003, 92, 153-164.	2.9	78
96	Sympatric occurrences of various cytotypes of Vaccinium sect. Oxycoccus (Ericaceae). Nordic Journal of Botany, 2002, 22, 593-601.	0.5	17
97	A taxonomic study of the Vaccinium sect. Oxycoccus (Hill) W.D.J. Kock (Ericaceae) in the Czech Republic and adjacent territories. Folia Geobotanica, 2001, 36, 303-320.	0.9	30