
Yunfeng Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. Journal of Materials Science, 2022, 57, 3613-3628.	1.7	20
2	A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. Small Methods, 2022, 6, .	4.6	3
3	One-Pot Hydrothermal Synthesis of Solution-Processable MoS ₂ /PEDOT:PSS Composites for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 7285-7296.	4.0	41
4	Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. Journal of Energy Chemistry, 2020, 43, 24-32.	7.1	148
5	Binderâ€Free Electrodes Derived from Interlayerâ€Expanded MoS ₂ Nanosheets on Carbon Cloth with a 3D Porous Structure for Lithium Storage. ChemElectroChem, 2019, 6, 2338-2343.	1.7	22
6	Scalable Solution Processing MoS ₂ Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. ACS Applied Materials & Interfaces, 2019, 11, 46746-46755.	4.0	14
7	An Electrosynthesized 3D Porous Molybdenum Sulfide/Graphene Film with Enhanced Electrochemical Performance for Lithium Storage. Small, 2018, 14, 1703096.	5.2	25
8	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
9	Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. Nature Communications, 2018, 9, 5070.	5.8	42
10	Tuning the structure of three dimensional nanostructured molybdenum disulfide/nitrogen-doped carbon composite for high lithium storage. Electrochimica Acta, 2018, 291, 197-205.	2.6	8
11	A "Tandem―Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 22031-22041.	4.0	40
12	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	2.6	84
13	High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale, 2017, 9, 5063-5071.	2.8	95
14	Selfâ€Assembly of Flexible Freeâ€6tanding 3D Porous MoS ₂ â€Reduced Graphene Oxide Structure for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700234.	7.8	181
15	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte. ACS Energy Letters, 2017, 2, 831-836.	8.8	134
16	Processable 2D materials beyond graphene: MoS ₂ liquid crystals and fibres. Nanoscale, 2016, 8, 16862-16867.	2.8	40