
## Myoung-Youp Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899531/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF       | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 1  | Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel.<br>Journal of Materials Science, 1995, 30, 1343-1351.                                          | 3.7      | 97           |
| 2  | Hydrogen-storage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment. International Journal of Hydrogen Energy, 2008, 33, 1711-1718.               | 7.1      | 79           |
| 3  | Synthesis by sol–gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. Journal of Power Sources, 2002, 111, 97-103.                               | 7.8      | 72           |
| 4  | Capacity fading of spinel phase LiMn2O4 with cycling. Journal of Power Sources, 1999, 83, 57-60.                                                                                                | 7.8      | 65           |
| 5  | Hydrogen storage properties of a Mg–Ni–Fe mixture prepared via planetary ball milling in a H2<br>atmosphere. International Journal of Hydrogen Energy, 2010, 35, 10366-10372.                   | 7.1      | 63           |
| 6  | Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under<br>H2 atmosphere. International Journal of Hydrogen Energy, 2011, 36, 13587-13594.          | 7.1      | 45           |
| 7  | Synthesis by sol–gel method and electrochemical properties of LiNi1â^'yAlyO2 cathode materials for<br>lithium secondary battery. Solid State Ionics, 2003, 156, 319-328.                        | 2.7      | 42           |
| 8  | Development of AB[sub 2]-Type Zr-Ti-Mn-V-Ni-M Hydride Electrode for Ni-MH Secondary Battery. Journal of the Electrochemical Society, 2001, 148, A1041.                                          | 2.9      | 40           |
| 9  | Improvement of hydrogen-storage properties of MgH2 by Ni, LiBH4, and Ti addition. International<br>Journal of Hydrogen Energy, 2013, 38, 1910-1917.                                             | 7.1      | 36           |
| 10 | Hydriding kinetics of a mechanically alloyed mixture Mg–10wt% Ni. International Journal of Hydrogen<br>Energy, 2003, 28, 403-408.                                                               | 7.1      | 35           |
| 11 | Hydrogen-storage properties of Mg–oxide alloys prepared by reactive mechanical grinding. Journal of<br>Alloys and Compounds, 2006, 415, 266-270.                                                | 5.5      | 32           |
| 12 | Electrochemical properties of LiNi1â^'yTiyO2 and LiNi0.975M0.025O2 (M=Zn, Al, and Ti) synthesized by the solid-state reaction method. Materials Research Bulletin, 2012, 47, 1021-1027.         | 5.2      | 32           |
| 13 | Development of a Mg-based hydrogen-storage material by addition of Ni and NbF5 via milling under<br>hydrogen. International Journal of Hydrogen Energy, 2015, 40, 11908-11916.                  | 7.1      | 28           |
| 14 | Dehydriding kinetics of a mechanically alloyed mixture Mg–10wt.%Ni. Journal of Alloys and<br>Compounds, 1999, 282, 243-247.                                                                     | 5.5      | 26           |
| 15 | Preparation by gravity casting and hydrogen-storage properties of Mg–23.5wt.%Ni–(5, 10 and) Tj ETQq1 1                                                                                          | 0.784314 | rgBT /Overlo |
| 16 | Synthesis of LiCo1/3Ni1/3Mn1/3O2 by a Simple Combustion Method and Electrochemical Properties.<br>Electronic Materials Letters, 2010, 6, 91-95.                                                 | 2.2      | 25           |
| 17 | Preparation and characterization of NbF 5 -added Mg hydrogen storage alloy. International Journal of<br>Hydrogen Energy, 2014, 39, 16486-16492.                                                 | 7.1      | 25           |
| 18 | Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with Nb2O5 and NbF5. Journal of Korean Institute of Metals and Materials, 2011, 49, 298-303. | 1.0      | 25           |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the capacity deterioration of spinel phase LiMn2O4with cycling around 4 V. Solid State Ionics, 1998, 112, 21-24.                                                                                                                                   | 2.7 | 24        |
| 20 | Effects on the H2-sorption properties of Mg of Co (with various sizes) and CoO addition by reactive grinding. Journal of Alloys and Compounds, 2004, 366, 279-288.                                                                                    | 5.5 | 24        |
| 21 | Rate enhancement of hydrogen generation through the reaction of magnesium hydride with water by<br>MgO addition and ball milling. Journal of Industrial and Engineering Chemistry, 2012, 18, 405-408.                                                 | 5.8 | 24        |
| 22 | Cycling performance of LiNi1â^'yMyO2 (M=Ni, Ga, Al and/or Ti) synthesized by wet milling and solid-state method. Metals and Materials International, 2012, 18, 465-472.                                                                               | 3.4 | 21        |
| 23 | Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb2O5 alloys. International Journal<br>of Hydrogen Energy, 2009, 34, 1944-1950.                                                                                                       | 7.1 | 18        |
| 24 | Variations in the electrochemical properties of metallic elements-substituted LiNiO2 cathodes with preparation and cathode fabrication conditions. Electronic Materials Letters, 2012, 8, 37-42.                                                      | 2.2 | 18        |
| 25 | Electrochemical properties of LiNiO2 substituted by Al or Ti for Ni via the combustion method.<br>Ceramics International, 2014, 40, 14141-14147.                                                                                                      | 4.8 | 18        |
| 26 | Changes in microstructure, phases, and hydrogen storage characteristics of metal hydro-borate and<br>nickel-added magnesium hydride with hydrogen absorption and release reactions. International<br>Journal of Hydrogen Energy, 2017, 42, 1018-1026. | 7.1 | 18        |
| 27 | Hydrogen storage properties of a Ni, Fe and Ti-added Mg-based alloy. Metals and Materials<br>International, 2012, 18, 279-286.                                                                                                                        | 3.4 | 17        |
| 28 | Development of AB2-type Zr–Ti–Mn–V–Ni–Fe hydride electrodes for Ni–MH secondary batteries.<br>Journal of Alloys and Compounds, 2000, 298, 254-260.                                                                                                    | 5.5 | 16        |
| 29 | Preparation of a Mg-Based alloy with a high hydrogen-storage capacity byÂadding a polymer CMC via<br>milling in a hydrogen atmosphere. International Journal of Hydrogen Energy, 2019, 44, 3779-3789.                                                 | 7.1 | 16        |
| 30 | Improvement of hydriding and dehydriding rates of Mg via addition of transition elements Ni, Fe, and<br>Ti. International Journal of Hydrogen Energy, 2011, 36, 12932-12938.                                                                          | 7.1 | 15        |
| 31 | Hydrogen desorption and absorption properties of Pd and MgO or nano-sized Ni-added MgH2+LiBH4 composites. Materials Research Bulletin, 2013, 48, 3453-3458.                                                                                           | 5.2 | 15        |
| 32 | Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti<br>addition. International Journal of Hydrogen Energy, 2012, 37, 18133-18139.                                                                           | 7.1 | 14        |
| 33 | Electrochemical performances of LiNiO2 substituted by Ti for Ni via the combustion method. Ceramics<br>International, 2014, 40, 11131-11137.                                                                                                          | 4.8 | 14        |
| 34 | Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding.<br>Journal of Materials Science, 2009, 44, 4827-4833.                                                                                                     | 3.7 | 12        |
| 35 | Nucleation and growth behaviors of hydriding and dehydriding reactions of Mg2Ni. Materials<br>Research Bulletin, 2018, 99, 23-28.                                                                                                                     | 5.2 | 12        |
| 36 | Formation of a High Pressure Form of Magnesium Hydride Î <sup>3</sup> -MgH2 by Mechanical Grinding under Low<br>Hydrogen Pressure. Journal of Korean Institute of Metals and Materials, 2013, 51, 119-123.                                            | 1.0 | 12        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electrochemical properties of LiCoyMn2â°'yO4 synthesized by the combustion method for lithium secondary battery. Solid State Ionics, 2003, 158, 103-111.                                                                 | 2.7 | 11        |
| 38 | Electrochemical properties of Li1â^'z (Ni1â^'y Fe y )1+z O2 synthesized by the combustion method in an air atmosphere. Journal of Applied Electrochemistry, 2009, 39, 617-625.                                           | 2.9 | 11        |
| 39 | Electrochemical properties of LiNi1â^'y M y O2 (M=Ni, Ga, Al and/or Ti) cathodes synthesized by the combustion method. Journal of Applied Electrochemistry, 2009, 39, 807-814.                                           | 2.9 | 11        |
| 40 | Effects of Zn or Ti substitution for Ni on the electrochemical properties of LiNiO2. Ceramics International, 2011, 37, 779-782.                                                                                          | 4.8 | 11        |
| 41 | Lithium nickel cobalt oxides synthesized from Li2CO3, NiO and Co3O4 by the solid-state reaction method. Ceramics International, 2012, 38, 3635-3641.                                                                     | 4.8 | 11        |
| 42 | Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene.<br>Metals and Materials International, 2018, 24, 1403-1411.                                                             | 3.4 | 11        |
| 43 | Hydrogen charging kinetics of Mg - 10wt% Fe2O3 prepared via MgH2-forming mechanical milling.<br>Materials Research Bulletin, 2021, 140, 111304.                                                                          | 5.2 | 11        |
| 44 | Enhancement of the Hydriding and Dehydriding Rates of Mg by Adding TiCl3 and Reactive Mechanical<br>Grinding. Journal of Korean Institute of Metals and Materials, 2015, 53, 187-191.                                    | 1.0 | 11        |
| 45 | Hydrogen Storage Characteristics of Metal Hydro-Borate and Transition Element-Added Magnesium<br>Hydride. Journal of Korean Institute of Metals and Materials, 2016, 54, 503-509.                                        | 1.0 | 11        |
| 46 | Hydrogen Storage and Release Properties of Transition Metal-Added Magnesium Hydride Alloy<br>Fabricated by Grinding in a Hydrogen Atmosphere. Journal of Korean Institute of Metals and Materials,<br>2016, 54, 510-518. | 1.0 | 11        |
| 47 | Hydrogen-storage property characterization of Mg–15wt%Ni–5wt%Fe2O3 prepared by reactive<br>mechanical grinding. International Journal of Hydrogen Energy, 2010, 35, 13055-13061.                                         | 7.1 | 10        |
| 48 | Effects of Ni, Fe 2 O 3 , and CNT addition by reactive mechanical grinding on the reaction rates with H 2 of Mg-based alloys. International Journal of Hydrogen Energy, 2012, 37, 1531-1537.                             | 7.1 | 10        |
| 49 | Preparation of Mg-MgH2 flakes by planetary ball milling with stearic acid and their hydrogen storage properties. Metals and Materials International, 2016, 22, 544-549.                                                  | 3.4 | 10        |
| 50 | Synthesis of a Mg-based alloy with a hydrogen-storage capacity of over 7 wt% by adding a polymer CMC<br>via transformation-involving milling. Materials Research Bulletin, 2018, 108, 23-31.                             | 5.2 | 10        |
| 51 | Hydrogen Storage Properties of Mg-Graphene Composites. Journal of Korean Institute of Metals and<br>Materials, 2018, 56, 524-531.                                                                                        | 1.0 | 10        |
| 52 | Hydrogen Uptake and Release Characteristics of Mg-xTaF5-xVCl3 (x=1.25, 2.5, and 5). Journal of Korean<br>Institute of Metals and Materials, 2018, 56, 611-619.                                                           | 1.0 | 10        |
| 53 | Enhancement of hydrogen-storage properties of Mg by reactive mechanical grinding with oxide, metallic element(s), and hydride-forming element. Ceramics International, 2011, 37, 897-902.                                | 4.8 | 9         |
| 54 | Improvement of hydrogen-storage properties of MgH2 by addition of Li3N, LiBH4, Fe and/or Ti. Materials<br>Research Bulletin, 2013, 48, 74-78.                                                                            | 5.2 | 9         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of a magnesium-based alloy after hydriding-dehydriding cycling (n=1–150). Metals<br>and Materials International, 2013, 19, 1139-1144.                                                                           | 3.4 | 9         |
| 56 | Increase in the dehydrogenation rates and hydrogen-storage capacity of Mg-graphene composites by adding nickel via reactive ball milling. Materials Research Bulletin, 2020, 130, 110938.                                        | 5.2 | 9         |
| 57 | Effects of fine Cr2O3 addition on Mg's hydrogen-storage performance. Journal of Industrial and<br>Engineering Chemistry, 2011, 17, 167-169.                                                                                      | 5.8 | 8         |
| 58 | Electrochemical properties of lithium nickel oxide synthesized by the combustion method in an O2 stream. Ceramics International, 2012, 38, 2443-2448.                                                                            | 4.8 | 8         |
| 59 | Improvement of hydrogen-storage properties of MgH2 by addition of Ni and Ti via reactive mechanical grinding and a rate-controlling step in its dehydriding reaction. Metals and Materials International, 2013, 19, 879-885.     | 3.4 | 8         |
| 60 | Comparison of hydrogen storage properties of pure Mg and milled pure Mg. Bulletin of Materials<br>Science, 2014, 37, 831-835.                                                                                                    | 1.7 | 8         |
| 61 | Preparation of a sample with a single MgH2 phase by horizontal ball milling and the first hydriding reaction of 90 wt% Mg-10 wt% MgH2. Metals and Materials International, 2015, 21, 422-428.                                    | 3.4 | 8         |
| 62 | Increase in Hydrogen Release Rate of MgH <sub>2</sub> by Grinding in a Hydrogen<br>Atmosphere with Ni Added. Journal of Nanoscience and Nanotechnology, 2016, 16, 10499-10507.                                                   | 0.9 | 8         |
| 63 | Increase in the Dehydrogenation Rate of Mg–CMC (Carboxymethylcellulose, Sodium Salt) by Adding Ni<br>via Hydride-Forming Milling. Metals and Materials International, 2019, 25, 516-527.                                         | 3.4 | 8         |
| 64 | MgH2 and Ni-Coated Carbon-Added Mg Hydrogen-Storage Alloy Prepared by Mechanical Alloying.<br>Journal of Korean Institute of Metals and Materials, 2016, 54, 125-131.                                                            | 1.0 | 8         |
| 65 | Study on the Reactivity with Hydrogen of Planetary Ball Milled 90 wt% Mg+10 wt% MgH2: Analyses of<br>Reaction Rates with Hydrogen and Microstructure. Journal of Korean Institute of Metals and<br>Materials, 2016, 54, 358-363. | 1.0 | 8         |
| 66 | Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg. Journal of Materials Science, 2010, 45, 5164-5170.                                                                                   | 3.7 | 7         |
| 67 | Hydrogen storage properties of Mg-23.5Ni-xCu prepared by rapid solidification process and crystallization heat treatment. International Journal of Hydrogen Energy, 2011, 36, 2170-2176.                                         | 7.1 | 7         |
| 68 | Electrochemical performance of cobalt-substituted lithium nickel oxides synthesized from lithium and nickel carbonates and cobalt oxide. Ceramics International, 2013, 39, 917-923.                                              | 4.8 | 7         |
| 69 | Advancement in the Hydrogen Absorbing and Releasing Kinetics of MgH2 by Mixing with Small Percentages of Zn(BH4)2 and Ni. Metals and Materials International, 2018, 24, 423-432.                                                 | 3.4 | 7         |
| 70 | Development of a Mg-Based Alloy with a Hydrogen-Storage Capacity of 7 wt% by Adding a Polymer CMC<br>via Transformation-Involving Milling. Journal of Korean Institute of Metals and Materials, 2018, 56,<br>392-399.            | 1.0 | 7         |
| 71 | Effects of Zn(BH <sub>4</sub> ) <sub>2</sub> , Ni, and/or Ti Doping on the<br>Hydrogen-Storage Features of MgH <sub>2</sub> . Journal of Korean Institute of Metals and<br>Materials, 2019, 57, 176-183.                         | 1.0 | 7         |
| 72 | Raising the Dehydrogenation Rate of a Mg-CMC (Carboxymethylcellulose, Sodium Salt) Composite by<br>Alloying Ni via Hydride-Forming Milling. Journal of Korean Institute of Metals and Materials, 2018, 56,<br>620-627.           | 1.0 | 7         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improvement of hydrogen storage characteristics of Mg by planetary ball milling under H2 with metallic element(s) and/or Fe2O3. International Journal of Hydrogen Energy, 2011, 36, 3521-3528.            | 7.1 | 6         |
| 74 | Electrochemical performances of Li1+zNiO2 (z=0, 0.04, 0.08, 0.10, 0.12, and 0.15) synthesized by a combustion method. Ceramics International, 2014, 40, 8585-8591.                                        | 4.8 | 6         |
| 75 | Development of a Hydrogen-Storage Alloy with a High Capacity of Approximately 6 wt% by Adding a<br>Transition Metal and a Halide. Journal of Nanoscience and Nanotechnology, 2017, 17, 8105-8111.         | 0.9 | 6         |
| 76 | Hydriding and Dehydriding Reactions of Mg-xTaF5 (x=0, 5, and 10) Prepared via Reactive Mechanical<br>Grinding. Journal of Korean Institute of Metals and Materials, 2014, 52, 957-962.                    | 1.0 | 6         |
| 77 | Hydrogen Sorption of Pure Mg and Niobium (V) Fluoride-Added Mg Alloys Prepared by Planetary Ball<br>Milling in Hydrogen. Journal of Korean Institute of Metals and Materials, 2016, 54, 916-924.          | 1.0 | 6         |
| 78 | Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via<br>Reactive Milling. Journal of Korean Institute of Metals and Materials, 2018, 56, 878-884.                | 1.0 | 6         |
| 79 | Improvement of the Hydrogen-Release Features of Mg-Graphene Composite by Adding Nickel via Reactive<br>Ball Milling. Journal of Korean Institute of Metals and Materials, 2019, 57, 663-672.              | 1.0 | 6         |
| 80 | Influences on the H2-sorption properties of Mg of Co (with various sizes) and CoO addition by reactive grinding and their thermodynamic stabilities. Metals and Materials International, 2004, 10, 69-75. | 3.4 | 5         |
| 81 | Improvement in the hydrogen-storage properties of Mg by the addition of metallic elements Ni, Fe, and<br>Ti, and an oxide Fe2O3. Materials Research Bulletin, 2011, 46, 1887-1891.                        | 5.2 | 5         |
| 82 | Electrochemical properties of LiCoyMn2â^'yO4 synthesized using a combustion method in a voltage range of 3.5–5.0V. Ceramics International, 2011, 37, 2215-2220.                                           | 4.8 | 5         |
| 83 | Hydrogen-storage characteristics of Mg–14Ni–6Fe2O3–2CNT prepared by reactive mechanical grinding.<br>Materials Research Bulletin, 2012, 47, 4059-4064.                                                    | 5.2 | 5         |
| 84 | Synthesis of lithium LiNi1â^'yCoyO2 from lithium carbonate, nickel oxide and cobalt carbonate and their electrochemical properties. Ceramics International, 2012, 38, 5987-5991.                          | 4.8 | 5         |
| 85 | Comparison of hydrogen-storage properties of Mg-14Ni-3Fe2O3-3Ti and Mg-14Ni-2Fe2O3-2Ti-2Fe. Metals and Materials International, 2013, 19, 543-548.                                                        | 3.4 | 5         |
| 86 | Synthesis and electrochemical characteristics of LiNi 0.5 Co 0.5 O 2 from different combinations of carbonates and oxides. Ceramics International, 2013, 39, 6937-6943.                                   | 4.8 | 5         |
| 87 | Preparation of Mg-33Al alloy by rapid solidification process and evaluation of its hydrogen-storage properties. Metals and Materials International, 2013, 19, 1145-1149.                                  | 3.4 | 5         |
| 88 | Hydrogen-storage properties of MgH2–10Ni–2NaAlH4–2Ti prepared by reactive mechanical grinding.<br>Journal of Industrial and Engineering Chemistry, 2014, 20, 1591-1595.                                   | 5.8 | 5         |
| 89 | Electrochemical properties of LiNiO2 cathode after TiO2 or ZnO addition. Ceramics International, 2014, 40, 4219-4224.                                                                                     | 4.8 | 5         |
| 90 | Hydriding and dehydriding rates of Mg, Mg-10TaF5, and Mg-10NbF5 prepared via reactive mechanical grinding. Metals and Materials International, 2015, 21, 208-212.                                         | 3.4 | 5         |

| #   | Article                                                                                                                                                                                                                 | IF                | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 91  | Cycling Performance of NaAlH4 and Transition Metals-Added MgH2 Prepared via Milling in a Hydrogen<br>Atmosphere. Journal of Nanoscience and Nanotechnology, 2017, 17, 8132-8137.                                        | 0.9               | 5            |
| 92  | Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC<br>(Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling. Metals and Materials<br>International, 2018, 24, 1181-1190. | 3.4               | 5            |
| 93  | Syntheses of nano-sized Co-based powders by carbothermal reduction for anode materials of lithium ion batteries. Ceramics International, 2018, 44, 4225-4229.                                                           | 4.8               | 5            |
| 94  | Nickel, Graphene, and Yttria-Stabilized Zirconia (YSZ)-Added Mg by Grinding in Hydrogen Atmosphere<br>for Hydrogen Storage. Metals, 2019, 9, 1347.                                                                      | 2.3               | 5            |
| 95  | Hydrogen-Storage Property Enhancement of Magnesium Hydride by Nickel Addition via Reactive<br>Mechanical Grinding. Journal of Korean Institute of Metals and Materials, 2013, 51, 607-613.                              | 1.0               | 5            |
| 96  | Improvement of the Reaction Rates of Mg with H2 by the Addition of TaF5 via Reactive Mechanical Grinding. Journal of Korean Institute of Metals and Materials, 2014, 52, 137-142.                                       | 1.0               | 5            |
| 97  | Highly Efficient Organic Light Emitting Diodes with Hole Injection Layer of Thermally Evaporated<br>Molybdenum Oxide. Electronic Materials Letters, 2009, 5, 151-155.                                                   | 2.2               | 4            |
| 98  | Electrochemical characteristics of cobalt-substituted lithium nickel oxides synthesized from lithium hydro-oxide and nickel and cobalt oxides. Ceramics International, 2012, 38, 6591-6597.                             | 4.8               | 4            |
| 99  | Hydrogen-storage characteristics of Cu, Nb2O5, and NbF5-added Mg–Ni alloys. Materials Research<br>Bulletin, 2012, 47, 172-178.                                                                                          | 5.2               | 4            |
| 100 | Fabrication of Fe-Ti alloys by pulsed current-assisted reaction from iron, manganese and titanium oxide or titanium hydride. Metals and Materials International, 2013, 19, 895-899.                                     | 3.4               | 4            |
| 101 | Phase transformations and hydrogen-storage characteristics of Mg-transition metal-oxide alloys.<br>Metals and Materials International, 2013, 19, 237-244.                                                               | 3.4               | 4            |
| 102 | Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10,) Tj ET                                                                                                              | Qq0 <u>3</u> 0 rg | BT /Overlock |
| 103 | Evaluation of the metal-added Mg hydrogen storage material and comparison with the oxide-added Mg. Journal of Industrial and Engineering Chemistry, 2015, 21, 378-386.                                                  | 5.8               | 4            |
| 104 | Preparation of an additive-free sample with a MgH2 phase by planetary ball milling of Mg with10 wt%<br>MgH2. Metals and Materials International, 2016, 22, 1121-1128.                                                   | 3.4               | 4            |
| 105 | Increasing the Hydrogenation and Dehydrogenation Rates of Magnesium by Incorporating CMC(Na)<br>(Carboxymethylcellulose-Sodium Salt) and Nickel. Journal of Nanoscience and Nanotechnology, 2019,<br>19, 6580-6589.     | 0.9               | 4            |
| 106 | Improvement in the Hydrogenation and Dehydrogenation Features of Mg by Milling in Hydrogen with<br>Vanadium Chloride. Journal of Korean Institute of Metals and Materials, 2021, 59, 709-717.                           | 1.0               | 4            |
| 107 | Enhancement of the Hydrogen Uptake and Release Rates of Mg by the Addition of TaF5 and VCl3 with<br>Reactive Mechanical Grinding. Nanoscience and Nanotechnology Letters, 2018, 10, 772-778.                            | 0.4               | 4            |
| 108 | Pressure-Composition Isotherms and Cycling Properties of Mg-xFe2O3-yNi Alloys. Journal of Korean<br>Institute of Metals and Materials, 2013, 51, 455-460.                                                               | 1.0               | 4            |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Comparison of lithium nickel cobalt oxides synthesized from NiO, Co3O4, and LiOH·H2O or Li2CO3 by solid-state reaction method. Ceramics International, 2012, 38, 5699-5705.                                                                         | 4.8 | 3         |
| 110 | Electrochemical properties of LiNi1â^'Co O2 (y= 0.1, 0.3 and 0.5) synthesized from LiOH·H2O, NiO and Co3O4 by solid state reaction method. Ceramics International, 2012, 38, 4953-4959.                                                             | 4.8 | 3         |
| 111 | Hydriding–dehydriding cycling behavior of magnesium–nickel–iron oxide alloy. Materials Research<br>Bulletin, 2012, 47, 1191-1196.                                                                                                                   | 5.2 | 3         |
| 112 | Synthesis of LiNi0.9Co0.1O2 from Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4 and their electrochemical properties. Ceramics International, 2013, 39, 7297-7303.                                                                                        | 4.8 | 3         |
| 113 | Synthesis of a Ti–Cr–V alloy by pulsed current assisted reaction. Journal of Industrial and<br>Engineering Chemistry, 2013, 19, 1267-1271.                                                                                                          | 5.8 | 3         |
| 114 | Electrochemical characteristics of LiNi0.5Co0.5O2 synthesized at 800°C from the different combinations of carbonates, oxides, and hydroxides. Ceramics International, 2013, 39, 5527-5533.                                                          | 4.8 | 3         |
| 115 | Electrochemical properties of nano-cobalt powder prepared by chemical reduction with and without cetyltrimethylammonium bromide and carbon-coated at 500 ŰC for secondary lithium Batteries. Metals and Materials International, 2014, 20, 793-799. | 3.4 | 3         |
| 116 | Hydrogen Storage Characteristics of Mg, Mg-5TaF <sub>5</sub> , and Mg-5NbF <sub>5</sub> Prepared via Grinding in a Hydrogen Atmosphere. Journal of Nanoscience and Nanotechnology, 2016, 16, 10508-10514.                                           | 0.9 | 3         |
| 117 | Hydrogenation and Dehydrogenation Behaviors of Mg <sub>2</sub> Ni Synthesized by Sintering<br>Pelletized Mixtures Under an Ar Atmosphere. Journal of Nanoscience and Nanotechnology, 2019, 19,<br>6571-6579.                                        | 0.9 | 3         |
| 118 | Enhancement of Hydrogen-Storage Characteristics of Magnesium Hydride via Reaction-Involved<br>Milling with Nickel and Lithium Borohydride. Journal of Korean Institute of Metals and Materials,<br>2014, 52, 1031-1036.                             | 1.0 | 3         |
| 119 | Hydrogen storage properties of pure Mg. Journal of Korean Institute of Metals and Materials, 2014, 52, 293-297.                                                                                                                                     | 1.0 | 3         |
| 120 | PCT Curve and Cycling Performance of MgH2-Ni-NaAlH4-Ti Alloy Milled under H2. Journal of Korean<br>Institute of Metals and Materials, 2014, 52, 391-396.                                                                                            | 1.0 | 3         |
| 121 | Synthesis of Zn(BH4)2 and Gas Absorption and Release Characteristics of Zn(BH4)2, Ni, or Ti-Added MgH2–Based Alloys. Journal of Korean Institute of Metals and Materials, 2015, 53, 500-505.                                                        | 1.0 | 3         |
| 122 | Electrochemical properties of LiNi1â^'yTiyO2 synthesized by ball milling and solid-state reaction method. Materials Research Bulletin, 2006, 41, 1720-1728.                                                                                         | 5.2 | 2         |
| 123 | Amelioration of the reaction kinetics of Mg with hydrogen by reactive mechanical grinding with Ni, Fe2O3, Ti or Fe. Journal of Industrial and Engineering Chemistry, 2011, 17, 700-704.                                                             | 5.8 | 2         |
| 124 | Variation with added material in the effects of reactive mechanical grinding and<br>hydriding–dehydriding cycling on the hydrogen-storage properties of Mg. Materials Research<br>Bulletin, 2012, 47, 2547-2551.                                    | 5.2 | 2         |
| 125 | Hydrogen storage characteristics of melt spun Mg–23.5Ni–5Cu alloys mixed with LaNi5 and/or Nb2O5.<br>Journal of Industrial and Engineering Chemistry, 2012, 18, 61-64.                                                                              | 5.8 | 2         |
| 126 | Electrochemical characteristics of LiNi0.9Co0.1O2 synthesized at 800°C from the different combinations of carbonates and oxides. Ceramics International, 2013, 39, 8575-8580.                                                                       | 4.8 | 2         |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Development of an Mg-Based Alloy with High Hydriding and Dehydriding Rates and Large Hydrogen<br>Storage Capacity by Adding TaF5. Journal of Nanoscience and Nanotechnology, 2018, 18, 6040-6046.                              | 0.9 | 2         |
| 128 | Improvement in the Hydrogen-Storage Characteristics of Magnesium Hydride by Grinding with Sodium<br>Alanate and Transition Metals in a Hydrogen Atmosphere. Journal of Nanoscience and<br>Nanotechnology, 2018, 18, 6047-6054. | 0.9 | 2         |
| 129 | Hydrogen-Storage Properties of Li3N, LiBH4, Fe and/or Ti-Added Mg or MgH2. Journal of Korean<br>Institute of Metals and Materials, 2013, 51, 615-619.                                                                          | 1.0 | 2         |
| 130 | Hydriding and Dehydriding Properties of Zinc Borohydride, Nickel, and Titanium-Added Magnesium<br>Hydride. Journal of Korean Institute of Metals and Materials, 2015, 53, 808-814.                                             | 1.0 | 2         |
| 131 | Effects of Milling and Hydriding-Dehydriding Cycling on the Hydrogen-Storage Behaviors of a<br>Magnesium-Nickel-Tantalum Fluoride Alloy. Journal of Korean Institute of Metals and Materials, 2015,<br>53, 904-910.            | 1.0 | 2         |
| 132 | Improvement in Hydriding and Dehydriding Features of Mg–TaF5–VCl3 Alloy by Adding Ni and x wt%<br>MgH2 (x = 1, 5, and 10) Together with TaF5 and VCl3. Micromachines, 2021, 12, 1194.                                          | 2.9 | 2         |
| 133 | Rate-Controlling Steps for the Hydriding Reaction of the Intermetallic Compound Mg <sub>2</sub> Ni.<br>Journal of Nanoscience and Nanotechnology, 2020, 20, 7010-7017.                                                         | 0.9 | 2         |
| 134 | Determination of the Activation Energy for Hydride Decomposition Using a Sieverts-Type Apparatus and the Kissinger Equation. Metals, 2022, 12, 265.                                                                            | 2.3 | 2         |
| 135 | Activation of Zr0.8Ti0.2Mn0.4V0.6Ni electrode by hot-charging treatment and its cycling performance for Ni-MH secondary battery. Journal of Alloys and Compounds, 2004, 370, 307-314.                                          | 5.5 | 1         |
| 136 | Electrochemical Properties of LiNi1-yAlyO2 Cathode Materials Synthesized by Emulsion Method.<br>Journal of the Ceramic Society of Japan, 2007, 115, 245-249.                                                                   | 1.3 | 1         |
| 137 | Synthesis and electrochemical properties of LiNi1â^'y Zn y O2. Journal of Electroceramics, 2009, 23, 447-451.                                                                                                                  | 2.0 | 1         |
| 138 | Study on the reactivity of MgH2+MgB2 composites under high hydrogen pressure and high temperature. Materials Research Bulletin, 2013, 48, 1071-1075.                                                                           | 5.2 | 1         |
| 139 | Hydrogen-storage properties of MgH2–10Ni–2NaAlH4–2Ti–2CNT milled in a planetary ball mill under<br>H2. Journal of Industrial and Engineering Chemistry, 2013, 19, 1963-1967.                                                   | 5.8 | 1         |
| 140 | Synthesis of Nanocobalt Powders for an Anode Material of Lithium-Ion Batteries by Chemical<br>Reduction and Carbon Coating. Journal of Nanomaterials, 2014, 2014, 1-8.                                                         | 2.7 | 1         |
| 141 | Electrochemical characteristics of LiNi0.7Co0.3O2 synthesized from different combinations of hydro-oxides, carbonates, and oxides at 800°C. Ceramics International, 2014, 40, 81-86.                                           | 4.8 | 1         |
| 142 | Hydrogenation and dehydrogenation rates of oxide Fe2O3-added magnesium, and effects of Ti addition.<br>Ceramics International, 2014, 40, 2389-2393.                                                                            | 4.8 | 1         |
| 143 | Role of the Added Ni in Hydrogen-Storage Reactions of MgH2-Zn(BH4)2-Tm (Ni, Ti, or Fe) Alloys.<br>Medziagotyra, 2018, 24, .                                                                                                    | 0.2 | 1         |
| 144 | Hydriding and Dehydriding Features of a Titanium-Added Magnesium Hydride Composite. Medziagotyra,<br>2020, 26, 199-204.                                                                                                        | 0.2 | 1         |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Study on the Variation in Microstructure of a Ferritic Stainless Steel with Surface Roughness and Thermal Cycling in Air. Journal of Nanoscience and Nanotechnology, 2021, 21, 4372-4382.                                          | 0.9 | 1         |
| 146 | Amelioration of Hydrogen Uptake and Release Features of Magnesium Adding a Polymer Polyvinylidene<br>Fluoride via Milling in Hydrogen in a Planetary Ball Mill. Journal of Nanoscience and Nanotechnology,<br>2020, 20, 7105-7113. | 0.9 | 1         |
| 147 | Enhancement of Reaction Kinetics with Hydrogen in Mg by Addition of Ni and TaF5 via Reactive<br>Mechanical Grinding. Journal of Korean Institute of Metals and Materials, 2013, 51, 051-055.                                       | 1.0 | 1         |
| 148 | TiCl3 and Ni-added Mg prepared by reactive mechanical grinding processing and comparison with Fe2O3 and Niadded Mg. Journal of Ceramic Processing Research, 2019, 20, 173-181.                                                     | 0.4 | 1         |
| 149 | Synthesis and superconductivity of Y2Ba1Cu1O5 and Pt added Nd1Ba2Cu3O7â^'y bulk superconductor.<br>Metals and Materials International, 2003, 9, 479-484.                                                                           | 3.4 | 0         |
| 150 | Cycling performance of LiNi y Mn2 â^' y O4 prepared by the solid-state reaction. Russian Journal of Electrochemistry, 2011, 47, 1363-1367.                                                                                         | 0.9 | 0         |
| 151 | Formation of Mg(OH)2 in Mg–Ni–Fe2O3 alloys prepared using reactive mechanical grinding. Journal of<br>Industrial and Engineering Chemistry, 2012, 18, 165-168.                                                                     | 5.8 | 0         |
| 152 | Variation with thermal cycling in microstructure and area specific resistance of a ferritic stainless steel having rough surfaces. Electronic Materials Letters, 2013, 9, 201-205.                                                 | 2.2 | 0         |
| 153 | Charge–discharge curves and discharge capacities of LiNi1â^'Co O2 synthesized from lithium carbonate<br>and nickel and cobalt oxides. Ceramics International, 2013, 39, 1561-1566.                                                 | 4.8 | 0         |
| 154 | Hydriding and dehydriding rates and hydrogen-storage capacity of Mg–14Ni–3Fe2O3–3Ti prepared by reactive mechanical grinding. Bulletin of Materials Science, 2013, 36, 661-666.                                                    | 1.7 | 0         |
| 155 | Development of Magnesium-Based Material with Hydrogen-Storage Capacity of 7 wt%. Journal of<br>Nanoscience and Nanotechnology, 2021, 21, 4353-4361.                                                                                | 0.9 | 0         |
| 156 | Improvement in the Hydrogenation and Dehydrogenation Features of Mg by Milling in Hydrogen with<br>Vanadium Chloride. Journal of Korean Institute of Metals and Materials, 2021, 59, 709-717.                                      | 1.0 | 0         |