Ibrahim M Banat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899399/publications.pdf

Version: 2024-02-01

267 papers 24,932 citations

80 h-index ⁷⁹⁵⁰
149
g-index

271 all docs

271 docs citations

times ranked

271

15793 citing authors

#	Article	IF	CITATIONS
1	Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 1996, 58, 217-227.	9.6	1,593
2	Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53, 495-508.	3.6	1,305
3	Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 2010, 87, 427-444.	3.6	1,193
4	Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy, 2006, 57, 609-618.	3.0	781
5	Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 2001, 56, 81-87.	3.6	751
6	Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technology, 1995, 51, 1-12.	9.6	623
7	Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 2000, 72, 219-226.	9.6	537
8	Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 2004, 21, 377-397.	4.2	489
9	Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 2018, 126, 45-56.	3.9	456
10	Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances, 2010, 28, 436-450.	11.7	418
11	Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 2012, 30, 558-565.	9.3	418
12	Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 2016, 38, 1015-1019.	2.2	404
13	Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 2003, 90, 159-168.	9.6	387
14	Cost effective technologies and renewable substrates for biosurfactants \tilde{A} \hat{a} , \hat{a} , \hat{b} production. Frontiers in Microbiology, 2014, 5, 697.	3.5	360
15	Biosurfactants: a sustainable replacement for chemical surfactants?. Biotechnology Letters, 2012, 34, 1597-1605.	2.2	358
16	Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 1996, 31, 435-442.	3.7	347
17	Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 2002, 85, 257-261.	9.6	334
18	Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 2011, 1, 5.	3.0	321

#	Article	lF	Citations
19	Methods for investigating biosurfactants and bioemulsifiers: a review. Critical Reviews in Biotechnology, 2010, 30, 127-144.	9.0	308
20	Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa Using Low-Cost Raw Materials. Biotechnology Progress, 2002, 18, 1277-1281.	2.6	249
21	Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. Journal of Applied Microbiology, 2019, 127, 12-28.	3.1	238
22	Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. Frontiers in Microbiology, 2016, 7, 1718.	3.5	231
23	Microbial biosurfactants as additives for food industries. Biotechnology Progress, 2013, 29, 1097-1108.	2.6	227
24	Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology, 2018, 14, 23-32.	3.1	224
25	Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology, 2010, 112, 617-627.	1.5	218
26	Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology, 2002, 81, 25-32.	9.6	198
27	Isolation of thermotolerant, fermentative yeasts growing at 52�C and producing ethanol at 45�C and 50�C. World Journal of Microbiology and Biotechnology, 1992, 8, 259-263.	3.6	196
28	Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnology, 2015, 32, 720-726.	4.4	182
29	Characterization of biosurfactants and their use in pollution removal - State of the Art. (Review). Acta Biotechnologica, 1995, 15, 251-267.	0.9	180
30	Microbial biofilms: biosurfactants as antibiofilm agents. Applied Microbiology and Biotechnology, 2014, 98, 9915-9929.	3.6	177
31	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 809-821.	3.6	173
32	Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 2011, 102, 3366-3372.	9.6	159
33	Production of green surfactants: Market prospects. Electronic Journal of Biotechnology, 2021, 51, 28-39.	2.2	159
34	Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied Microbiology and Biotechnology, 2019, 103, 3521-3535.	3.6	152
35	Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. Journal of Petroleum Science and Engineering, 2006, 50, 71-77.	4.2	149
36	Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 2014, 145, 710-716.	8.2	148

3

#	Article	IF	Citations
37	Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology, 2011, 102, 772-778.	9.6	145
38	The isolation of a thermophilic biosurfactant producing Bacillus SP. Biotechnology Letters, 1993, 15, 591-594.	2.2	144
39	Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 2015, 31, 707-723.	1.6	140
40	Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends in Biotechnology, 2018, 36, 277-289.	9.3	139
41	Isolation of biosurfactant-producing bacteria, product characterization, and evaluation. Acta Biotechnologica, 1991, 11, 315-324.	0.9	128
42	Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology, 2016, 56, 1140-1158.	3.3	128
43	Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource Technology, 2015, 198, 231-236.	9.6	127
44	Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 2022, 181, 108377.	3.6	127
45	Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiology Letters, 2016, 363, fnv224.	1.8	125
46	Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology, 2006, 100, 470-480.	3.1	123
47	Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery. Frontiers in Microbiology, 2015, 6, 1324.	3.5	118
48	Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresource Technology, 2017, 225, 99-105.	9.6	116
49	Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Applied Microbiology and Biotechnology, 2006, 72, 132-138.	3.6	114
50	Sulfate Reduction and Methanogenesis in the Sediment of a Saltmarsh on the East Coast of the United Kingdom. Applied and Environmental Microbiology, 1982, 43, 987-996.	3.1	110
51	Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment International, 2000, 26, 75-79.	10.0	109
52	Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresource Technology, 2007, 98, 860-865.	9.6	108
53	Decolorization and biodegradation of anaerobically digested sugarcane molasses spent wash effluent from biomethanation plants by white-rot fungi. Process Biochemistry, 1998, 33, 83-88.	3.7	106
54	Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World Journal of Microbiology and Biotechnology, 2008, 24, 917-925.	3.6	106

#	Article	IF	Citations
55	Biosurfactant production and use in oil tank clean-up. World Journal of Microbiology and Biotechnology, 1991, 7, 80-88.	3.6	104
56	Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research, 2020, 492, 108004.	2.3	104
57	Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the Western Mediterranean. Aquaculture, 2003, 219, 83-97.	3.5	102
58	Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnology Letters, 2008, 30, 263-270.	2.2	101
59	The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environmental Microbiology, 2002, 4, 595-602.	3.8	100
60	Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. Journal of Medical Microbiology, 2020, 69, 1040-1048.	1.8	98
61	Solution Self-Assembly and Adsorption at the Airâ^'Water Interface of the Monorhamnose and Dirhamnose Rhamnolipids and Their Mixtures. Langmuir, 2010, 26, 18281-18292.	3.5	96
62	Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 2011, 102, 10618-10624.	9.6	96
63	Evidence for Coexistence of Two Distinct Functional Groups of Sulfate-Reducing Bacteria in Salt Marsh Sediment. Applied and Environmental Microbiology, 1981, 42, 985-992.	3.1	96
64	Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere, 2007, 66, 179-184.	8.2	95
65	Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics, 2020, 12, 1099.	4.5	95
66	Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology. Bioresource Technology, 2021, 320, 124222.	9.6	95
67	High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 2002, 82, 177-181.	9.6	94
68	Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2197-2201.	1.7	93
69	Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technology, 2000, 72, 43-46.	9.6	91
70	Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. International Journal of Molecular Sciences, 2014, 15, 13720-13737.	4.1	91
71	Detection and Quantification of Gene Expression in Environmental Bacteriology. Applied and Environmental Microbiology, 2004, 70, 3795-3806.	3.1	90
72	Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnology, 2017, 36, 26-36.	4.4	89

#	Article	IF	CITATIONS
73	Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresource Technology, 2010, 101, 2273-2279.	9.6	87
74	Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering, 2015, 2, 144-162.	1.1	86
75	Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using <i>Kluyveromyces marxianus</i> IMB4. Biotechnology and Bioengineering, 2008, 101, 894-902.	3.3	85
76	Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochemical Society Transactions, 2004, 32, 214-217.	3.4	84
77	Inhibition of microbial adhesion to silicone rubber treated with biosurfactant fromStreptococcus thermophilusA. FEMS Immunology and Medical Microbiology, 2006, 46, 107-112.	2.7	84
78	Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Applied Microbiology and Biotechnology, 2017, 101, 3941-3951.	3.6	84
79	Possibilities and Challenges for Biosurfactants Use in Petroleum Industry. Advances in Experimental Medicine and Biology, 2010, 672, 135-145.	1.6	83
80	Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnology Letters, 1996, 18, 117-120.	2.2	81
81	Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World Journal of Microbiology and Biotechnology, 1995, 11, 304-306.	3.6	80
82	Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources. Indian Journal of Microbiology, 2011, 51, 30-36.	2.7	80
83	Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Annals of Microbiology, 2012, 62, 753-763.	2.6	80
84	Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Applied Microbiology and Biotechnology, 2016, 100, 5773-5779.	3.6	80
85	Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. International Biodeterioration and Biodegradation, 2016, 115, 192-198.	3.9	79
86	Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. Journal of Basic Microbiology, 2002, 42, 284.	3.3	78
87	Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 2007, 45, 686-691.	2.2	77
88	Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. Journal of Applied Microbiology, 2017, 123, 1111-1123.	3.1	77
89	Adjuvant Antibiotic Activity of Acidic Sophorolipids with Potential for Facilitating Wound Healing. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	76
90	Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnology Letters, 1997, 19, 311-314.	2.2	75

#	Article	IF	CITATIONS
91	<p>Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review</p> . Drug Design, Development and Therapy, 2020, Volume 14, 541-550.	4.3	75
92	Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 358-370.	3.4	70
93	Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochemistry, 2009, 44, 540-545.	3.7	70
94	Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Applied Microbiology and Biotechnology, 2016, 100, 7945-7956.	3.6	69
95	Development of a Cradle-to-Grave Approach for Acetylated Acidic Sophorolipid Biosurfactants. ACS Sustainable Chemistry and Engineering, 2017, 5, 1186-1198.	6.7	69
96	Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China. Scientific Reports, 2012, 2, 760.	3.3	68
97	Applications of Biological Surface Active Compounds in Remediation Technologies. Advances in Experimental Medicine and Biology, 2010, 672, 121-134.	1.6	68
98	<i>Pseudomonas aeruginosa</i> biofilm disruption using microbial surfactants. Journal of Applied Microbiology, 2016, 120, 868-876.	3.1	66
99	Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate. Langmuir, 2010, 26, 17958-17968.	3.5	65
100	Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Applied Microbiology and Biotechnology, 2008, 78, 841-852.	3.6	64
101	Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology, 2008, 99, 5951-5955.	9.6	64
102	Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresource Technology, 2016, 205, 1-6.	9.6	64
103	Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product. Frontiers in Microbiology, 2017, 8, 767.	3.5	62
104	The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiology Ecology, 2006, 56, 44-54.	2.7	61
105	Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 2021, 14, 147-170.	4.2	61
106	Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiology, 2002, 19, 127-134.	4.2	59
107	Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochemical Society Transactions, 2004, 32, 209-213.	3.4	59
108	Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresource Technology, 2012, 108, 245-251.	9.6	59

#	Article	IF	Citations
109	Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 2019, 19, 39.	3.3	59
110	<i>In situ</i> downstream strategies for costâ€effective bio/surfactant recovery. Biotechnology and Applied Biochemistry, 2018, 65, 523-532.	3.1	58
111	Solution Self-Assembly of the Sophorolipid Biosurfactant and Its Mixture with Anionic Surfactant Sodium Dodecyl Benzene Sulfonate. Langmuir, 2011, 27, 8867-8877.	3.5	57
112	Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE, 2012, 7, e34350.	2.5	57
113	Biosurfactant Production by Azotobacter chroococcum Isolated from the Marine Environment. Marine Biotechnology, 2009, 11, 551-556.	2.4	56
114	Multiple Roles of Biosurfactants in Biofilms. Current Pharmaceutical Design, 2016, 22, 1429-1448.	1.9	56
115	Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnology and Bioengineering, 2000, 68, 531-535.	3.3	55
116	Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microbial Ecology, 1981, 7, 305-313.	2.8	54
117	Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochemistry, 2008, 43, 346-350.	3.7	54
118	The use of a thermotolerant fermentativeKluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnologica, 1996, 16, 215-223.	0.9	53
119	Characterization of rhamnolipids produced by aPseudomonas aeruginosamutant strain grown on waste oils. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1367-1373.	1.7	53
120	Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics, 2021, 13, 466.	4.5	53
121	Isolation, characterization, and optimization of biosurfactant production by an oil-degrading Acinetobacter junii B6 isolated from an Iranian oil excavation site. Biocatalysis and Agricultural Biotechnology, 2017, 12, 1-9.	3.1	51
122	Lactobacillus acidophilus Derived Biosurfactant as a Biofilm Inhibitor: A Promising Investigation Using Microfluidic Approach. Applied Sciences (Switzerland), 2018, 8, 1555.	2.5	51
123	Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microbial Cell Factories, 2019, 18, 164.	4.0	51
124	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 823-834.	3.6	50
125	A Comparison of Effects of Broad-Spectrum Antibiotics and Biosurfactants on Established Bacterial Biofilms. Current Microbiology, 2013, 67, 614-623.	2.2	49
126	The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. New Biotechnology, 2015, 32, 157-167.	4.4	48

#	Article	IF	Citations
127	Marine derived biosurfactants: a vast potential future resource. Biotechnology Letters, 2018, 40, 1441-1457.	2.2	48
128	Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and $0\hat{A}\hat{A}^{\circ}C$. Food Chemistry, 2003, 82, 353-360.	8.2	47
129	Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface. Langmuir, 2011, 27, 8854-8866.	3.5	46
130	Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess and Biosystems Engineering, 2021, 44, 2003-2034.	3.4	46
131	The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environment International, 1997, 23, 547-551.	10.0	45
132	Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Applied Microbiology and Biotechnology, 2013, 97, 7297-7306.	3.6	45
133	Continuous Whey Fermentation Using Kefir Yeast Immobilized on Delignified Cellulosic Material. Journal of Agricultural and Food Chemistry, 2002, 50, 2543-2547.	5.2	44
134	Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chemistry, 2004, 87, 11-15.	8.2	44
135	Metal Removal from Contaminated Soils Through Bioleaching with Oxidizing Bacteria and Rhamnolipid Biosurfactants. Soil and Sediment Contamination, 2015, 24, 16-29.	1.9	44
136	Hospital airborne microbial pollution in a desert country. Environment International, 1997, 23, 167-172.	10.0	43
137	Biosurfactants: promising bioactive molecules for oral-related health applications. FEMS Microbiology Letters, 2016, 363, fnw213.	1.8	43
138	Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids and Surfaces B: Biointerfaces, 2017, 157, 325-334.	5.0	42
139	Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute. Biomedicine and Pharmacotherapy, 2017, 94, 1186-1196.	5.6	41
140	Nutritional requirements and growth characteristics of a biosurfactant-producing Rhodococcus bacterium. World Journal of Microbiology and Biotechnology, 1991, 7, 53-60.	3.6	40
141	Residential indoor airborne microbial populations in the United Arab Emirates. Environment International, 1997, 23, 529-533.	10.0	40
142	High alcohol production by repeated batch fermentation using an immobilized osmotolerant Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 222-226.	3.0	40
143	Influence of Calcium Ions on Rhamnolipid and Rhamnolipid/Anionic Surfactant Adsorption and Self-Assembly. Langmuir, 2013, 29, 3912-3923.	3.5	40
144	The effect of sophorolipids against microbial biofilms on medical-grade silicone. Journal of Biotechnology, 2020, 309, 34-43.	3.8	40

#	Article	IF	CITATIONS
145	The Potential of Bacterial Isolates for Emulsification with a Range of Hydrocarbons. Acta Biotechnologica, 2003, 23, 335-345.	0.9	39
146	Continuous winemaking fermentation using quince-immobilized yeast at room and low temperatures. Process Biochemistry, 2003, 39, 143-148.	3.7	39
147	Whey-cheese production using freeze-dried kefir culture as a starter. Journal of Applied Microbiology, 2007, 103, 1170-1183.	3.1	39
148	Rhamnolipids from <i>Pseudomonas aeruginosa</i> strain W10; as antibiofilm/antibiofouling products for metal protection. Journal of Basic Microbiology, 2017, 57, 364-375.	3.3	39
149	Biosurfactants' Potential Role in Combating COVID-19 and Similar Future Microbial Threats. Applied Sciences (Switzerland), 2021, 11, 334.	2.5	38
150	Biosurfactants: Opportunities for the development of a sustainable future. Current Opinion in Colloid and Interface Science, 2021, 56, 101514.	7.4	38
151	Microbiologically Induced Corrosion of UNS NO4400 in Seawater. Corrosion, 1993, 49, 63-73.	1.1	36
152	Low-temperature wine-making using yeast immobilized on pear pieces. Journal of the Science of Food and Agriculture, 2004, 84, 1615-1623.	3.5	36
153	Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Applied Microbiology and Biotechnology, 2010, 87, 1347-1354.	3.6	36
154	Surface properties and sub-surface aggregate assimilation of rhamnolipid surfactants in different aqueous systems. Biotechnology Letters, 2010, 32, 811-816.	2.2	36
155	Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China. Applied Microbiology and Biotechnology, 2010, 88, 1413-1422.	3.6	35
156	A study of anti-cancer effects of Funalia trogii in vitro and in vivo. Food and Chemical Toxicology, 2011, 49, 1477-1483.	3.6	35
157	Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Applied Microbiology and Biotechnology, 2015, 99, 9177-9187.	3.6	34
158	Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess and Biosystems Engineering, 2019, 42, 901-919.	3.4	34
159	Lactonic Sophorolipids Increase Tumor Burden in Apcmin+/- Mice. PLoS ONE, 2016, 11, e0156845.	2.5	33
160	What are high-temperature bacteria doing in cold environments?. Trends in Microbiology, 2002, 10, 120-121.	7.7	31
161	An Evaluation of Soil Colonisation Potential of Selected Fungi and their Production of Ligninolytic Enzymes for Use in Soil Bioremediation Applications. Antonie Van Leeuwenhoek, 2006, 90, 147-158.	1.7	31
162	Biodegradation of Crude Oil by Nitrogen Fixing Marine Bacteria Azotobacter chroococcum. Research Journal of Microbiology, 2006, 1, 401-408.	0.2	31

#	Article	IF	Citations
163	Post-Gulf-War assessment of nutrients, heavy metal ions, hydrocarbons, and bacterial pollution levels in the United Arab Emirates coastal waters. Environment International, 1998, 24, 109-116.	10.0	30
164	High-Temperature Wine Making Using the Thermotolerant Yeast Strain Kluyveromyces marxianus IMB3. Applied Biochemistry and Biotechnology, 2004, 112, 25-36.	2.9	30
165	Application of electrospray mass spectrometry in the detection and determination of Remazol textile dyes. Journal of Chromatography A, 1999, 854, 259-274.	3.7	29
166	Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions. AMB Express, 2017, 7, 202.	3.0	29
167	A Novel Alkaliphilic Streptomyces Inhibits ESKAPE Pathogens. Frontiers in Microbiology, 2018, 9, 2458.	3.5	29
168	Lead(II) uptake during baker's yeast production by aerobic fermentation of molasses. Process Biochemistry, 2003, 38, 1479-1482.	3.7	28
169	Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. , 2014, , 361-370.		28
170	Hydrocarbonoclastic Alcanivorax Isolates Exhibit Different Physiological and Expression Responses to n-dodecane. Frontiers in Microbiology, 2016, 7, 2056.	3.5	28
171	Quorum sensing as a potential target for increased production of rhamnolipid biosurfactant in Burkholderia thailandensis E264. Applied Microbiology and Biotechnology, 2019, 103, 6505-6517.	3.6	28
172	Lactic acid fermentation by Lactobacillus casei in free cell form and immobilised on gluten pellets. Biotechnology Letters, 2002, 24, 1233-1236.	2.2	27
173	Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Frontiers in Microbiology, 2020, 11, 1477.	3.5	27
174	Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans–Staphylococcus spp. Dual-Species Biofilms. Frontiers in Microbiology, 2020, 11, 545654.	3.5	26
175	Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Environmental Pollution, 2021, 276, 116742.	7. 5	26
176	Upgrading of discarded oranges through fermentation using kefir in food industry. Food Chemistry, 2008, 106, 40-49.	8.2	25
177	Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Applied Microbiology and Biotechnology, 2017, 101, 8443-8454.	3.6	25
178	Title is missing!. World Journal of Microbiology and Biotechnology, 1997, 13, 283-288.	3.6	24
179	Grape and apple wines volatile fermentation products and possible relation to spoilage. Bioresource Technology, 2003, 87, 337-339.	9.6	24
180	Potential Microorganisms for Prevention of Paraffin Precipitation in a Hypersaline Oil Reservoir. Energy & Discourse Fuels, 2014, 28, 1191-1197.	5.1	24

#	Article	IF	Citations
181	<p>Hydrogels For Peptide Hormones Delivery: Therapeutic And Tissue Engineering Applications</p> . Drug Design, Development and Therapy, 2019, Volume 13, 3405-3418.	4.3	24
182	Toxicity Profiling of Biosurfactants Produced by Novel Marine Bacterial Strains. International Journal of Molecular Sciences, 2021, 22, 2383.	4.1	24
183	Mechanisms of turnover of C2-C4fatty acids in high-sulphate and low-sulphate anaerobic sediments. FEMS Microbiology Letters, 1983, 17, 107-110.	1.8	23
184	Bacterial biodegradation of phenol and 2,4-dichlorophenol. Journal of Chemical Technology and Biotechnology, 2003, 78, 959-963.	3.2	23
185	Inhibition of sulphate reduction in anoxic marine sediment by Group VI anions. Estuarine, Coastal and Shelf Science, 1984, 18, 361-366.	2.1	22
186	High growth rate and substrate exhaustion results in rapid cell death and lysis in the thermophilic bacteriumGeobacillus thermoleovorans. Biotechnology and Bioengineering, 2006, 95, 84-95.	3.3	22
187	Use of immobilized cell biocatalysts in baking. Process Biochemistry, 2007, 42, 1244-1249.	3.7	22
188	Biorefining palm oil agricultural refinery waste for added value rhamnolipid production via fermentation. Industrial Crops and Products, 2018, 116, 64-72.	5. 2	22
189	An unusual facultatively anaerobic filamentous fungus isolated under prolonged enrichment culture conditions. Mycological Research, 1994, 98, 757-760.	2.5	21
190	Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure. Pharmaceutics, 2022, 14, 360.	4.5	21
191	Wastewater treatment and algal productivity in an integrated ponding system. Biological Wastes, 1990, 32, 265-275.	0.2	20
192	Title is missing!. Biotechnology Letters, 1998, 20, 753-755.	2.2	20
193	Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264. Applied Microbiology and Biotechnology, 2018, 102, 6163-6174.	3.6	20
194	Storage of Immobilized Yeast Cells for Use in Wine-Making at Ambient Temperature. Journal of Agricultural and Food Chemistry, 2003, 51, 654-658.	5.2	19
195	Protocols for Measuring Biosurfactant Production in Microbial Cultures. Springer Protocols, 2014, , 119-128.	0.3	19
196	Î'cidogenic fermentation of wheat straw after chemical and microbial pretreatment for biofuel applications. Energy Conversion and Management, 2018, 160, 509-517.	9.2	19
197	Biodegradation potential of crude petroleum by hydrocarbonoclastic bacteria isolated from Soummam wadi sediment and chemical-biological proprieties of their biosurfactants. Journal of Petroleum Science and Engineering, 2020, 184, 106554.	4.2	19
198	The effect of sulphate-reducing bacteria on the electrochemical behaviour of corrosion-resistant alloys in sea water. Corrosion Science, 1993, 35, 683-691.	6.6	18

#	Article	IF	Citations
199	Congener-dependent conformations of isolated rhamnolipids at the vacuum-water interface: A molecular dynamics simulation. Journal of Colloid and Interface Science, 2021, 585, 148-157.	9.4	17
200	Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants. Journal of Colloid and Interface Science, 2017, 487, 493-503.	9.4	16
201	Adsorption at the Air–Water Interface in Biosurfactant–Surfactant Mixtures: Quantitative Analysis of Adsorption in a Five-Component Mixture. Langmuir, 2017, 33, 13027-13039.	3.5	15
202	Algae removal by sand filtration and reuse of filter material. Waste Management, 1991, 11, 59-65.	7.4	14
203	A rapid and effective method of extracting fully intact RNA from thermophilic geobacilli that is suitable for gene expression analysis. Extremophiles, 2004, 8, 73-77.	2.3	14
204	Reduced TCA cycle rates at high hydrostatic pressure hinder hydrocarbon degradation and obligate oil degraders in natural, deep-sea microbial communities. ISME Journal, 2019, 13, 1004-1018.	9.8	14
205	Porous cellulose as promoter of oil production by the oleaginous yeast Lipomyces starkeyi using mixed agroindustrial wastes. Bioresource Technology, 2017, 244, 629-634.	9.6	13
206	The petroleum-degrading bacteria Alcaligenes aquatilis strain YGD 2906 as a potential source of lipopeptide biosurfactant. Fuel, 2021, 285, 119112.	6.4	13
207	Biosurfactants aided bioremediation mechanisms: A mini-review. Soil and Sediment Contamination, 2022, 31, 801-817.	1.9	13
208	Degradation of naphthalene by bacterial cultures. Environment International, 1998, 24, 671-677.	10.0	12
209	The use of low-cost brewery waste product for the production of surfactin as a natural microbial biocide. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00537.	4.4	12
210	Production, partial characterization, and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzyme and Microbial Technology, 1994, 16, 665-670.	3.2	11
211	Protocols for the Detection and Chemical Characterisation of Microbial Glycolipids. Springer Protocols, 2014, , 29-60.	0.3	11
212	Optimization of washing conditions with biogenic mobilizing agents for marine fuel-contaminated beach sands. New Biotechnology, 2018, 43, 13-22.	4.4	11
213	Carrierâ∈Based Systems as Strategies for Oral Delivery of Therapeutic Peptides and Proteins: A Miniâ∈Review. International Journal of Peptide Research and Therapeutics, 2021, 27, 1589-1596.	1.9	11
214	Sanitary conditions in three creeks in Dubai, Sharjah and Ajman Emirates on the Arabian gulf (UAE). Environmental Monitoring and Assessment, 1994, 32, 21-36.	2.7	10
215	Post-Gulf-War nutrients and microbial assessments for coastal waters of Dubai, Sharjah, and Ajman Emirates (UAE). Environment International, 1995, 21, 23-32.	10.0	10
216	The performance of surfactant mixtures at low temperatures. Journal of Colloid and Interface Science, 2019, 534, 64-71.	9.4	10

#	Article	IF	Citations
217	Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRI quorum sensing. Scientific Reports, 2021, 11, 5729.	3.3	10
218	The use of multiple-vessel, open flow systems to investigate carbon flow in anaerobic microbial communities. Microbial Ecology, 1983, 9, 189-199.	2.8	9
219	Deposit reduction in a high pour point oil reservoir due to the activity of indigenous bacterial communities. International Biodeterioration and Biodegradation, 2016, 110, 87-98.	3.9	9
220	Bioremediation of Petroleum Sludge using Bacterial Consortium with Biosurfactant., 2007,, 391-408.		8
221	Geobacillus Activities in Soil and Oil Contamination Remediation. Soil Biology, 2011, , 259-270.	0.8	8
222	Genomovar assignment of Pseudomonas stutzeri populations inhabiting produced oil reservoirs. MicrobiologyOpen, 2014, 3, 446-456.	3.0	8
223	Biosurfactant-facilitated leaching of metals from spent hydrodesulphurization catalyst. Journal of Applied Microbiology, 2018, 125, 1358-1369.	3.1	8
224	Physiological characteristics of four methylotrophic bacteria and their potential use in single-cell protein production. MIRCEN Journal of Applied Microbiology and Biotechnology, 1989, 5, 149-159.	0.3	7
225	Dynamics of a microbial community during an effective boost MEOR trial using high-throughput sequencing. RSC Advances, 2018, 8, 690-697.	3.6	7
226	Biodiversity of Biosurfactants and Roles in Enhancing the (Bio)availability of Hydrophobic Substrates. , 2018, , 75-103.		7
227	Lipopeptide Biosurfactant from Acinetobacter junii B6: A Promising Natural Surfactant for Promoting Angiogenesis. International Journal of Peptide Research and Therapeutics, 2021, 27, 1197-1203.	1.9	7
228	pH-Sensitive Polymer-Based Carriers as a Useful Approach for Oral Delivery of Therapeutic Protein: A Review. Protein and Peptide Letters, 2021, 28, 1230-1237.	0.9	7
229	Performance of an Integrated Ponding System Operated in Arid Zones. Water Science and Technology, 1991, 23, 1543-1552.	2.5	7
230	The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts. Applied Sciences (Switzerland), 2021, 11, 173.	2.5	7
231	Bacterial, nutrients and heavy metal ions pollution assessment along the eastern coastal area of the United Arab Emirates. Journal of Aquatic Ecosystem Health, 1996, 5, 73-81.	0.4	6
232	Improvement of Kefir yeast by mutation with N-methyl-N- nitrosoguanidine. Biotechnology Letters, 2002, 24, 557-560.	2.2	6
233	Potential of a Funalia trogii laccase enzyme as an anticancer agent. Annals of Microbiology, 2015, 65, 175-183.	2.6	6
234	The use of thermophilic bacteria in accelerated hydrocarbon bioremediation. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	6

#	Article	IF	Citations
235	Bioreactor Rhamnolipid Production Using Palm Oil Agricultural Refinery By-Products. Processes, 2021, 9, 2037.	2.8	6
236	The isolation and characterisation of a salicylate-hydroxylase-producing strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 1992, 37, 378-381.	3.6	5
237	A novel thermotolerant methylotrophicBacillus sp. and its potential for use in single-cell protein production. World Journal of Microbiology and Biotechnology, 1992, 8, 290-295.	3.6	5
238	Microbial and nutrient pollution assessment of coastal and creek waters of northern U.A.E Environment International, 1993, 19, 569-578.	10.0	5
239	Antimicrobial properties of sophorolipids produced by Candida Bombicola ATCC 22214 against gram positive and Gram-negative bacteria. New Biotechnology, 2014, 31, S66-S67.	4.4	5
240	Production of Biosurfactants by Hydrocarbons degrading bacteria isolated from Soummam watershed Sediments of Bejaia in Algeria. Environmental Progress and Sustainable Energy, 2018, 37, 189-195.	2.3	5
241	Thermophilic bacteria in cool soils: metabolic activity and mechanisms of dispersal., 2011,, 43-58.		4
242	Chemostat optimization of biomass production of a mixed bacterial culture utilizing methanol. Applied Microbiology and Biotechnology, 1990, 32, 550.	3.6	4
243	Isolation and characterization of four methylotrophic bacterial strains. Journal of Basic Microbiology, 1990, 30, 321-331.	3.3	4
244	Protocols for the Isolation and Analysis of Lipopeptides and Bioemulsifiers. Springer Protocols, 2014, , 3-28.	0.3	4
245	Streptomyces Isolates from the Soil of an Ancient Irish Cure Site, Capable of Inhibiting Multi-Resistant Bacteria and Yeasts. Applied Sciences (Switzerland), 2021, 11, 4923.	2.5	4
246	Biodiversity of Biosurfactants and Roles in Enhancing the (Bio)availability of Hydrophobic Substrates. , 2017, , 1-29.		4
247	Assessment of Rheological Behaviour of Water-in-Oil Emulsions Mediated by Glycolipid Biosurfactant Produced by Bacillus megaterium SPSW1001. Applied Biochemistry and Biotechnology, 2022, 194, 1310-1326.	2.9	4
248	Methanol metabolism and ammonia assimilation in four methylophilns strains. Acta Biotechnologica, 1991, 11, 87-93.	0.9	3
249	Ethanol Production from Sugarcane Bagasse Using SSF Process and Thermotolerant Yeast. Transactions of the ASABE, 2015, , 193-200.	1.1	3
250	Elucidate microbial characteristics in a full-scale treatment plant for offshore oil produced wastewater. PLoS ONE, 2021, 16, e0255836.	2.5	3
251	A Novel Approach to Enhance Crude Oil Recovery Ratio Using Selected Bacterial Species. Applied Sciences (Switzerland), 2021, 11, 10492.	2.5	3
252	Large-scale production of bacterial biomass from methanol for use as milk-replacer. Biotechnology Letters, 1990, 12, 139-144.	2.2	2

#	Article	IF	CITATIONS
253	Bod and cod removal in waste stabilization ponds. Environmental Technology (United Kingdom), 1992, 13, 1181-1186.	2.2	2
254	Dihydrofolate reductase synthesis in continuous culture using a methotrexate-resistant Escherichia coli. Enzyme and Microbial Technology, 1993, 15, 652-656.	3.2	2
255	Bioactive Natural Products 2016. BioMed Research International, 2016, 2016, 1-2.	1.9	2
256	Altering the Hydrophobic/Hydrophilic Nature of Bioplastic Surfaces for Biomedical Applications. , 2021, , 431-466.		2
257	A Thermodynamic Micellization and Hemolysis Evaluation of Polysorbate Surfactants in Combination with Short-Chain Alcohols. Journal of Cluster Science, 0, , 1 .	3.3	2
258	Antimicrobial and antibiofilm potential of biosurfactants as novel combination therapy against bacterium that cause skin infections. Access Microbiology, 2019, 1 , .	0.5	2
259	Complementary protein extraction methods increase the identification of the Park Grass Experiment metaproteome. Applied Soil Ecology, 2022, 173, 104388.	4.3	2
260	Achieving Commercial Applications for Microbial Biosurfactants. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	1.1	2
261	NUTRITIONAL AND TOXICOLOGICAL EVALUATION OF SINGLE-CELL PROTEIN PRODUCED FROM BACILLUS SP. KISRI-TM1A IN RATS. Journal of Food Quality, 1995, 18, 495-509.	2.6	1
262	Isolation of Glycoprotein Bioemulsifiers Produced by Marine Bacteria. Springer Protocols, 2015, , 61-74.	0.3	1
263	Tracking alterations of alkyl side chains of N ₁ species in heavy crude oil after anaerobic biodegradation with negativeâ€ion electrospray ionization coupled with highâ€field Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 875-882.	1.5	1
264	Reduction of nucleic acid content in cell biomass of methanol-utilizing mixed bacterial culture by heat treatment. Biotechnology Letters, 1988, 10, 597-602.	2.2	0
265	Production of Ethanol and Xylitol by Thermotolerant Kluyveromyces marxianus Strains using Xylose at 40 and $45 \hat{A}^{\circ}\text{C}$, 2008 , , .		0
266	Screening Of Kluyveromyces marxianus IMB Strains At Microaerophilic Conditions For Xylitol Production. , 2010, , .		0
267	Medicinal Practice of Bioactive Compounds (Natural/Synthetic): An Insight into Gastrointestinal Disorders. BioMed Research International, 2014, 2014, 1-1.	1.9	0